AUSTRALASIAN BRONCHIOLITIS GUIDELINE
Acknowledgments

The Australasian Bronchiolitis Guideline have been developed by the Paediatric Research in Emergency Departments International Collaborative (PREDICT) research network and we acknowledge the generous financial assistance provided by the National Health and Medical Research Council (Grant ID 1058560).

A Guideline Advisory Group was initially established from PREDICT and convened a multidisciplinary Guideline Development Committee with expert knowledge and skills within the fields of Emergency and Paediatric Medicine. This multidisciplinary Development Committee complement the skills and knowledge of the Guideline Advisory Group. This ensured stakeholder engagement and representation from specific specialty areas to ensure broad relevance of the guideline.

Guideline Advisory Group
Associate Professor Meredith Borland
Associate Professor Elizabeth Cotterell
Dr Stuart Dalziel
Associate Professor Edward Oakley
Ms Sharon O’Brien

Multidisciplinary Guideline Development Committee
Dr David Armstrong
Associate Professor Franz Babl
Dr Paul Bauert
Dr Christine Brabay
Dr Lydia Garside
Ms Libby Haskell
Dr David Levitt
Ms Nicola McKay
Dr Jocelyn Neutze
Associate Professor Andreas Schibler
Dr Kam Sinn
Dr Janine Spencer
Ms Helen Stevens
Dr David Thomas
Dr Michael Zhang

PREDICT would like to acknowledge the input and feedback provided in the consultation phase by stakeholders to ensure relevance of the final guideline to the Australasian emergency and paediatric ward setting. Formal feedback was received from: Australasian College for Emergency Medicine, The Australian Paediatric Society, The Royal Australasian College of Physicians, South Island Alliance Child Health Service, Children’s Healthcare Australasia, Australian College of Emergency Nursing Ltd, The Australian College of Children and Young People’s Nurses, College of Child and Youth Nurses New Zealand, College of Emergency Nurses New Zealand, Family Advisory Committee Royal Children’s Hospital Melbourne, New South Wales Office of Kids and Families, New South Wales Paediatric Clinical Nurse Consultant Group, Paediatric Department Christchurch Hospital, Paediatric Respiratory Department Starship Children’s Health, Royal New Zealand College of Urgent Care, Professor Innes Asher, Associate Professor Simon Craig, Dr Joshua Osowicki, Dr Arjun Rao, Associate Professor Mike Starr and Dr Emma Tavendar.

PREDICT would also like to acknowledge the support and assistance provided by Ms Catherine Wilson, PREDICT Research Network Co-ordinator.
Australasian Bronchiolitis Guideline

Purpose/Aim
This guideline has been developed to provide an evidence based clinical framework for the management of infants (0-12 months) with bronchiolitis treated in Australasian emergency departments (EDs) or general paediatric wards. Application of these guidelines for children over 12 months may be relevant but there is less diagnostic certainty in the 12-24 month age group. (All references to age within this Guideline refer to chronological age unless stated otherwise.)

Diagnosis
Viral bronchiolitis is a clinical diagnosis, based on typical history and examination. Peak severity is usually at around day two to three of the illness with resolution over 7-10 days. The cough may persist for weeks. Bronchiolitis most commonly occurs in the winter months, but can be seen all year round.

Features
Bronchiolitis typically begins with an acute upper respiratory tract infection followed by onset of respiratory distress and fever and one or more of:
- Cough
- Tachypnoea
- Retractions
- Widespread crackles or wheeze
Bronchiolitis is usually self-limiting, often requiring no treatment or interventions.

Risk factors for more serious illness
- Gestational age less than 37 weeks
- Chronological age at presentation less than 10 weeks
- Post natal exposure to cigarette smoke
- Breast fed for less than two months
- Failure to thrive
- Chronic lung disease
- Congenital heart disease
- Chronic neurological conditions
- Indigenous ethnicity
Infants with any of these risk factors are more likely to deteriorate rapidly and require escalation of care. Consider hospital admission even if presenting early in illness with mild symptoms.

Initial Assessment
This table is meant to provide guidance in order to stratify severity. The more symptoms the infant has in the mild-severe categories, the more likely they are to develop severe disease.

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behaviour</td>
<td>Normal</td>
<td>Some/intermittent irritation</td>
<td>Increasing irritability and/or lethargy</td>
</tr>
<tr>
<td>Respiratory Rate</td>
<td>Normal – mild tachypnoea</td>
<td>Increased respiratory rate</td>
<td>Marked increase or decrease in respiratory rate</td>
</tr>
<tr>
<td>Use of accessory muscles</td>
<td>Nil to mild chest wall retraction</td>
<td>Moderate chest wall retractions</td>
<td>Marked chest wall retractions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tracheal tug</td>
<td>Marked tracheal tug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nasal flaring</td>
<td>Marked nasal flaring</td>
</tr>
<tr>
<td>Oxygen saturation / oxygen requirement</td>
<td>O₂ saturations greater than 92% (in room air)</td>
<td>O₂ saturations 90 - 92% (in room air)</td>
<td>O₂ saturations less than 90% (in room air)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypoxemia, may not be corrected by O₂</td>
</tr>
<tr>
<td>Apnoeic episodes</td>
<td>None</td>
<td>May have brief apnoea</td>
<td>May have increasingly frequent or prolonged apnoea</td>
</tr>
<tr>
<td>Feeding</td>
<td>Normal</td>
<td>May have difficulty with feeding or reduced feeding</td>
<td>Reluctant or unable to feed</td>
</tr>
</tbody>
</table>
Initial Management

The main treatment of bronchiolitis is supportive. This involves ensuring appropriate oxygenation and fluid intake.

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood of Admission</td>
<td>Suitable for discharge. Consider risk factors.</td>
<td>Likely admission, may be able to be discharged after a period of observation. Management should be discussed with a local senior physician.</td>
<td>Requires admission and consider need for transfer to an appropriate children’s facility/PICU. Threshold for referral is determined by local escalation policies but should be early.</td>
</tr>
<tr>
<td>Observations</td>
<td>Adequate assessment in ED prior to discharge (minimum of two recorded measurements or every four hours as per local hospital guidelines and EWT).</td>
<td>Hourly - dependent on condition (as per local hospital guidelines and EWT).</td>
<td>Hourly with continuous cardiorespiratory (including oximetry) monitoring and close nursing observation - dependent on condition (as per local hospital guidelines and EWT).</td>
</tr>
<tr>
<td>Vital signs (respiratory rate, heart rate, O₂ saturations, temperature)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydration/Nutrition</td>
<td>Small frequent feeds</td>
<td>If not feeding adequately (less than 50% over 12 hours), administer NG or IV hydration.</td>
<td>If not feeding adequately (less than 50% over 12 hours), or unable to feed, administer NG or IV hydration.</td>
</tr>
<tr>
<td>Oxygen saturation / oxygen requirement</td>
<td>Nil requirement</td>
<td>Administer O₂ to maintain saturations greater than or equal to 92%.</td>
<td>Administer O₂ to maintain saturations greater than or equal to 92%.</td>
</tr>
<tr>
<td>Respiratory Support</td>
<td>Consider HFNC if a trial of NPO2 is ineffective.</td>
<td>Decision to admit should be supported by clinical assessment, social and geographical factors and phase of illness.</td>
<td>Consider HFNC or CPAP.</td>
</tr>
<tr>
<td>Disposition/Escalation</td>
<td>Consider further medical review if early in the illness and any risk factors are present or if child develops increasing severity after discharge.</td>
<td>Decision to admit should be supported by clinical assessment, social and geographical factors and phase of illness.</td>
<td>Consider escalation if severity does not improve. Consider ICU review/admission or transfer to local centre with paediatric HDU/ICU capacity if: - Severity does not improve - Persistent desaturations - Significant or recurrent apnoea’s associated with desaturations</td>
</tr>
<tr>
<td>Parental Education</td>
<td>Provide advice on the expected course of illness and when to return (worsening symptoms and inability to feed adequately). Provide Parent Information Sheet.</td>
<td>Provide advice on the expected course of illness and when to return (worsening symptoms and inability to feed adequately). Provide Parent Information Sheet.</td>
<td>Provide advice on the expected course of illness.Provide Parent Information Sheet.</td>
</tr>
</tbody>
</table>
PICU = paediatric intensive care unit, EWT = early warning tool, NG = Nasogastric, IV = Intravenous, NPO2 = Nasal Prong Oxygen, HFNC = heated humidified high flow oxygen/air via nasal cannulae, CPAP = continuous positive airway pressure, HDU = high dependency unit.

Investigations
In most infants presenting to hospital and/or hospitalised with bronchiolitis, no investigations are required.

Chest x-ray (CXR)
- Is not routinely indicated in infants presenting with bronchiolitis and may lead to unnecessary treatment with antibiotics with subsequent risk of adverse events

Blood tests (including full blood count (FBC), blood cultures)
- Have no role in management

Virological testing (nasopharyngeal swab or aspirate)
- Has no role in management of individual patients

Urine microscopy and culture
- May be considered to identify urinary tract infection if a temperature over 38 degrees in an infant less than two months of age with bronchiolitis.

Management

Respiratory Support
- Oxygen therapy should be instituted when oxygen saturations are persistently less than 92%
- It is appreciated that infants with bronchiolitis will have brief episodes of mild/moderate desaturations to levels less than 92%. These brief desaturations are not a reason to commence oxygen therapy.
- Oxygen should be discontinued when oxygen saturations are persistently greater than or equal to 92%.
- Heated humidified high flow oxygen/air via nasal cannulae (HFNC) can be considered in the presence of hypoxia (oxygen saturation less than 92%) and moderate to severe recessions. Its use in infants without hypoxia should be limited to the randomised controlled trial (RCT) setting only

Monitoring
- Observations as per local hospital guidelines and Early Warning Tools (EWTs)
- Continuous oximetry should not be routinely used to dictate medical management unless disease is severe

Hydration/Nutrition
- When non-oral hydration is required either intravenous (IV) or nasogastric (NG) hydration are appropriate
- If IV fluid is used it should be isotonic (0.9% Sodium Chloride with Glucose or similar)
- The ideal volume of IV or NG fluids required to maintain hydration remains unknown; between 60% to 100% of maintenance fluid is an appropriate volume to initiate

Medication
- Beta 2 agonists – Do not administer beta 2 agonists (including those with a personal or family history of atopy)
- Corticosteroids – Do not administer systemic or local glucocorticoids (nebulised, oral, intramuscular (IM) or IV)
- Adrenaline – Do not administer adrenaline (nebulised, IM or IV) except in peri-arrest or arrest situation.
- Hypertonic Saline – Do not administer nebulised hypertonic saline
- Antibiotics – Including Azithromycin are not indicated in bronchiolitis
- Antivirals - Are not indicated
Nasal Suction
- **Nasal suction** is not routinely recommended. Superficial nasal suction may be considered in those with moderate disease to assist feeding
- **Nasal saline drops** may be considered at time of feeding

Chest Physiotherapy
- Is not indicated

Ongoing management
- HFNC or Nasal CPAP therapy may be considered in the appropriate ward setting

Discharge planning and community-based management
- Infants can be discharged when oxygen saturations are greater than or equal to 92% and feeding is adequate
- Infants younger than 8 weeks of age are at an increased risk of representation
- Discharge on **home oxygen** can be considered after a period of observation in selected infants as per local policies, if appropriate community short term oxygen therapy is available.
- Follow up and review as per local practice

Education (parent/care-giver)
- A Bronchiolitis Parent Information Sheet should be provided
- Parents should be educated about the illness, the expected progression and when and where to seek further medical care

Safety initiatives
- Use simple infection control practices such as hand washing
- **Cohorting** of infants (based on virological testing) has not been shown to improve outcomes
Clinical Recommendations

Diagnosis

1. Infants can be diagnosed with bronchiolitis if they have an upper respiratory tract infection followed by onset of respiratory distress with fever, and one or more of: cough, tachypnoea, retractions and diffuse crackles or wheeze on auscultation.
 (NHMRC: C, GRADE: Weak)

2. Clinicians should consider as risk factors for more serious illness: gestational age less than 37 weeks; chronological age at presentation less than 10 weeks; exposure to cigarette smoke; breast feeding for less than two months; failure to thrive; having chronic lung disease; having chronic heart and/or chronic neurological conditions; being Indigenous ethnicity, and should take these into account when managing infants with bronchiolitis.
 (NHMRC: C, GRADE: Conditional)

3. Routine CXR is not recommended as it does not improve management in infants presenting with simple bronchiolitis, and may lead to treatments of no benefit.
 (NHMRC: D, GRADE: Conditional)

4. There is no role for blood tests in managing infants presenting to hospital and hospitalised with bronchiolitis. Routine bacteriological testing of blood and urine is not recommended.
 (NHMRC: D, GRADE: Conditional)

 In infants less than two months of age presenting to hospital or hospitalised with bronchiolitis with a temperature over 38 degrees, there is a low risk of urinary tract infection (UTI). If clinical uncertainty exists clinicians may consider collecting a urine sample for microscopy, culture and sensitivity looking for the concurrent presence of UTI.

5. In infants with bronchiolitis, routine use of viral testing is not recommended for any clinically relevant end-points, including cohorting of bronchiolitis patients.
 (NHMRC: C, GRADE: Conditional)
Clinical Recommendations

Management

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>GRADE</th>
<th>NHMRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. For infants presenting to hospital or hospitalised with bronchiolitis, there is insufficient evidence to recommend the use of a scoring system to predict need for admission or hospital length of stay. (NHMRC: D, GRADE: Weak)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Oxygen saturations, adequacy of feeding, age (infants younger than eight weeks), and lack of social support should be considered at the time of discharge as a risk for representation. There is insufficient evidence to recommend absolute discharge criteria for infants attending the ED, or hospitalised with bronchiolitis (NHMRC: Practice Point, GRADE: Weak)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a. Do not administer beta 2 agonists to infants, less than or equal to 12 months of age, presenting to hospital or hospitalised with bronchiolitis. (NHMRC: A, GRADE: Strong)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8b. Do not administer beta 2 agonists to infants, less than or equal to 12 months of age, presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy. (NHMRC: D, GRADE: Weak)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Do not administer adrenaline/epinephrine to infants presenting to hospital or hospitalised with bronchiolitis. (NHMRC: B, GRADE: Strong)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Do not administer nebulised hypertonic saline in infants presenting to hospital or hospitalised with bronchiolitis. (NHMRC: D, GRADE: Conditional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11a. Do not administer systemic or local glucocorticoids to infants presenting to hospital or hospitalised with bronchiolitis. (NHMRC: B, GRADE: Strong)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11b. Do not administer systemic or local glucocorticoids to infants presenting to hospital or hospitalised with bronchiolitis, with a positive response to beta 2 agonists. (NHMRC: D, GRADE: Weak)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11c. Do not administer a combination of systemic or local glucocorticoids and adrenaline/epinephrine to infants presenting to hospital or hospitalised with bronchiolitis. (NHMRC: D, GRADE: Weak)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12a. Consider the use of supplemental oxygen in the treatment of hypoxic (oxygen saturations less than 92%) infants with bronchiolitis. (NHMRC: C, GRADE: Conditional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12b. In uncomplicated bronchiolitis oxygen supplementation should be commenced if the oxygen saturation level is sustained at a level less than 92%. At oxygen saturation levels of 92% or greater, oxygen therapy should be discontinued. (NHMRC: C, GRADE: Conditional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Routine use of continuous pulse oximetry is not required for medical management of non-hypoxic (saturations greater than or equal to 92%) infants not receiving oxygen, or stable infants receiving oxygen. (NHMRC: C, GRADE: Conditional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>High Flow Nasal Cannulae Oxygen (HFNC) in bronchiolitis can be considered in the inpatient setting on infants with bronchiolitis with hypoxia (oxygen saturations less than 92%). Its use in children without hypoxia should be limited to the RCT setting only. (NHMRC: C, GRADE: Conditional)</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Chest physiotherapy is not recommended for routine use in infants with bronchiolitis. (NHMRC: B, GRADE: Strong)</td>
<td></td>
</tr>
<tr>
<td>16a.</td>
<td>Nasal suction is not recommended as routine practice in the management of infants with bronchiolitis. Superficial nasal suction may be considered in those with moderate disease to assist feeding. (NHMRC: D, GRADE: Conditional)</td>
<td></td>
</tr>
<tr>
<td>16b.</td>
<td>Deep nasal suction for the management of bronchiolitis is not recommended. (NHMRC: D, GRADE: Conditional)</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Routine nasal saline drops are not recommended. Trial of intermittent saline drops may be considered at time of feeding. (NHMRC: Practice Point, GRADE: Weak)</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Nasal CPAP therapy for infants with bronchiolitis may be considered for the management of infants. (NHMRC: C, GRADE: Conditional)</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>After a period of observation, infants at low risk for severe bronchiolitis can be considered for discharge on home oxygen as part of an organised ‘Home Oxygen Program’ which has clear ‘Return to Hospital’ advice. (NHMRC: C, GRADE: Conditional)</td>
<td></td>
</tr>
<tr>
<td>20a.</td>
<td>Do not use antibiotics to treat infants with bronchiolitis. (NHMRC: B, GRADE: Conditional)</td>
<td></td>
</tr>
<tr>
<td>20b.</td>
<td>Do not use azithromycin for treatment of infants admitted to hospital with bronchiolitis. (NHMRC: B, GRADE: Conditional)</td>
<td></td>
</tr>
<tr>
<td>20c.</td>
<td>Do not use azithromycin for treatment of infants admitted to hospital with bronchiolitis who are at risk of developing bronchiectasis. (NHMRC: C, GRADE: Conditional)</td>
<td></td>
</tr>
<tr>
<td>21a.</td>
<td>Supplemental hydration is recommended for infants who cannot maintain hydration orally. (NHMRC: Practice Point, GRADE: Weak)</td>
<td></td>
</tr>
<tr>
<td>21b.</td>
<td>Both NG and IV routes are acceptable means for non-oral hydration in infants admitted to hospital with bronchiolitis. (NHMRC: B, GRADE: Strong)</td>
<td></td>
</tr>
<tr>
<td>21c.</td>
<td>There is insufficient evidence to recommend a specific proportion of maintenance fluid. There is a risk of fluid overload therefore judicious and vigilant use of hydration fluid is and regular clinical review is recommended. Isotonic fluid is recommended. (NHMRC: Practice Point, GRADE: Weak)</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Hand hygiene is the most effective intervention to reduce hospital acquired infections and is recommended. There is inadequate evidence for benefits in cohorting infants with bronchiolitis. (NHMRC: D, GRADE: Weak)</td>
<td></td>
</tr>
</tbody>
</table>
The aim of this project was to formulate an evidence based, clinical practice guideline for infants with bronchiolitis presenting to, and admitted into Australasian hospitals. The scope was to examine the evidence for the diagnosis and management for the purpose of improving health outcomes. The guideline addresses the emergency department and general ward management of bronchiolitis, recognising that in order to influence management for the majority of patients who present to hospital with bronchiolitis, these two areas are critical to in-hospital management. Management in primary care and in intensive care units is excluded (as only a small proportion of patients admitted to hospital with bronchiolitis require intensive care management)(1). The guideline excludes public health prevention as this is outside the scope of Australasian hospital based care.

The Australasian Bronchiolitis Guideline has been developed utilising both the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology (2) and the National Health and Medical Research Council (NHMRC) Grading System methodology (3). A Guideline Development Committee was formed comprising of 22 individuals including; General Paediatricians, Paediatric Respiratory Physicians, Paediatric Emergency Medicine Physicians, Emergency Physicians, Paediatric Intensive Care Physicians, Paediatric Nurse Practitioners, Paediatric Nurses, and Emergency Nurses from a mixture of metropolitan and non-metropolitan centres, from both New Zealand and Australia (including representatives from seven of the eight States and Territories). The Guideline Development Committee conducted a face-to-face meeting in which guideline methodology was agreed on, current State and Tertiary Children’s Hospitals Bronchiolitis guidelines (4-7) were reviewed and 33 key PICOt questions relevant to the management of bronchiolitis were formulated.

An evidence search from 1 January 2000 to 1 May 2015 was conducted of the following electronic databases: Ovid Medline, Ovid Embase, PubMed, Cinahl, Cochrane Review library and Cochrane Database of Systematic Reviews (CDSR) (search strategy available in appendix). One of five members of the Guideline Development Committee reviewed the title and abstracts of the 7955 titles identified in the literature search. Articles relevant to 33 PICOt questions and the proposed guideline were included. Where screening by title and abstract was insufficient to make a decision as to relevance, a copy of the complete article was sourced and reviewed. Selected articles were then divided into the relevant PICOt question groups. If a high-quality Cochrane systematic review relevant to the PICOt question existed only systematic reviews and RCTs subsequent to the year of the documented search date in the Cochrane systematic review were included.

Two members of the Guideline Development Committee independently reviewed articles relevant to each PICOt question utilising the GRADE (2) and NHMRC Grading System (3) to assess methodological quality, data synthesis and development of recommendations. The GRADE system entails an assessment of the quality of a body of evidence for each individual outcome, including consideration of within-study risk of bias (methodological quality), directness of evidence, heterogeneity, precision of effect estimates and risk of publication bias. The GRADE method is recognised internationally as a reliable method of reviewing the quality of evidence and is a structured process for developing and presenting evidence summaries for systematic reviews. The process is transparent and includes comprehensive criteria for downgrading and upgrading quality of evidence ratings for the development of recommendations (2). The NHMRC process is Australian specific and addresses the evidence to support clinical questions such as intervention, diagnosis, prognosis, aetiology and screening which are specifically related to guideline development (3). The NHMRC process for evidence review includes rating the five key components of the ‘body of evidence’ for each recommendation. These components are: the evidence base, in terms of the number of studies, level of evidence and quality of studies (risk of bias), consistency of the study results, potential clinical impact of the proposed recommendation, generalisability of the body of evidence.
evidence to the target population and the applicability of the body of evidence to the Australian healthcare context (8). Any disagreements that arose between the first two reviewers were resolved through discussion with a third reviewer. Evidence tables and summaries of evidence were prepared for each PICOT question.

Where possible the evidence presented in these guidelines is based on systematic reviews and RCTs. Where there was only low quality indirect supportive evidence, clinical care statements outlining current accepted practise points were included.

A draft guideline, and the recommendations and evidence tables for the 33 PICOT was reviewed by the Guideline Development Committee. Consensus was sought using nominal group technique principles to formulate the clinical practice recommendations and practice points for the draft guideline.

A second literature search was performed on the 17th of December 2015 of the same electronic databases, using the same search strategy, to identify any subsequent literature at the time of the draft guideline development (7 months since initial search). A further 764 articles were identified and these were reviewed utilising the same process as used for the first literature search.

The draft guideline was sent to key stakeholders within Australia and New Zealand. Feedback was incorporated into the final guideline.

Table: NHMRC strength of recommendation definitions (3)

<table>
<thead>
<tr>
<th>A</th>
<th>Body of evidence can be trusted to guide practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendation(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
</tbody>
</table>

Table: GRADE quality of evidence definitions (9)

<table>
<thead>
<tr>
<th>High quality</th>
<th>Further research is very unlikely to change our confidence in the estimate of effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate quality</td>
<td>Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate</td>
</tr>
<tr>
<td>Low quality</td>
<td>Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate</td>
</tr>
<tr>
<td>Very low quality</td>
<td>Any estimate of effect is very uncertain</td>
</tr>
</tbody>
</table>

Australasian Bronchiolitis Guideline 31 August 2016

13
<table>
<thead>
<tr>
<th>Number</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In infants presenting to hospital what factors in history and physical examination contribute to a differential diagnosis of bronchiolitis?</td>
</tr>
<tr>
<td>2</td>
<td>In infants presenting to hospital with bronchiolitis, what are the risk factors for admission or severe disease (e.g. prolonged length of hospital stay, intensive care unit (ICU) admission, and death)?</td>
</tr>
<tr>
<td>3</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does performing a CXR beneficially change medical management or clinically relevant end-points?</td>
</tr>
<tr>
<td>4</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does performing laboratory tests (blood and/or urine) beneficially change medical management or clinically relevant end-points?</td>
</tr>
<tr>
<td>5</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does performing virological investigations beneficially change medical management or clinically relevant end-points?</td>
</tr>
<tr>
<td>6</td>
<td>For infants presenting to hospital or hospitalised with bronchiolitis, does use of a bronchiolitis scoring system beneficially change medical management or clinically relevant end-points?</td>
</tr>
<tr>
<td>7</td>
<td>For infants presenting to hospital or hospitalised with bronchiolitis, what criteria should be used for safe discharge?</td>
</tr>
<tr>
<td>8a. i)</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does administration of Beta2 Agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?</td>
</tr>
<tr>
<td>8a. ii)</td>
<td>In older infants presenting to hospital or hospitalised with bronchiolitis, does administration of Beta2 Agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?</td>
</tr>
<tr>
<td>8b. i)</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy, does administration of Beta2 Agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?</td>
</tr>
<tr>
<td>8b. ii)</td>
<td>In older infants presenting to hospital or hospitalised with bronchiolitis, with a second or subsequent episode/s of bronchiolitis or wheeze, does administration of Beta2 Agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?</td>
</tr>
<tr>
<td>9</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does administration of adrenaline / epinephrine (nebulisation, IM or IV) improve clinically relevant end-points?</td>
</tr>
<tr>
<td>10</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does administration of nebulised hypertonic saline improve clinically relevant end-points?</td>
</tr>
<tr>
<td>11a.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does administration of systemic or local glucocorticoids (nebulisation, oral, IM or IV) improve clinically relevant end-points?</td>
</tr>
<tr>
<td>11b.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, with a positive response to Beta2 Agonists, does administration of systemic or local glucocorticoids (nebulisation, oral, IM or IV) improve clinically relevant end-points?</td>
</tr>
<tr>
<td>11c.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does administration of the combination of systemic or local glucocorticoids (nebulisation, oral, IM or IV) and adrenaline improve clinically relevant end-points?</td>
</tr>
<tr>
<td>12a.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does administration of supplemental oxygen improve clinically relevant end-points?</td>
</tr>
<tr>
<td>12b.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, what level of oxygen saturation should lead to commencement or discontinuation of supplemental oxygen to improve clinically relevant end-points?</td>
</tr>
<tr>
<td>13.</td>
<td>In infants hospitalised with bronchiolitis does continuous monitoring of pulse oximetry beneficially change medical management or clinically relevant end-points?</td>
</tr>
<tr>
<td>14.</td>
<td>In infants hospitalised with bronchiolitis does the use of heated humidified high flow oxygen, or air, via nasal cannula improve clinically relevant end-points?</td>
</tr>
<tr>
<td>15.</td>
<td>In infants hospitalised with bronchiolitis, does chest physiotherapy improve clinically relevant end-points?</td>
</tr>
<tr>
<td>16a.</td>
<td>In infants hospitalised with bronchiolitis, does suctioning of the nose or nasopharynx improve clinically relevant end-points?</td>
</tr>
<tr>
<td>16b.</td>
<td>In infants hospitalised with bronchiolitis, does deep suctioning in comparison to superficial suctioning beneficially improve clinically relevant end-points?</td>
</tr>
<tr>
<td>17.</td>
<td>In infants hospitalised with bronchiolitis, does the use of nasal saline drops improve clinically relevant end-points?</td>
</tr>
<tr>
<td>18.</td>
<td>In infants hospitalised with bronchiolitis, does the use of bubble CPAP improve clinically relevant end-points?</td>
</tr>
<tr>
<td>19.</td>
<td>In infants hospitalised with bronchiolitis, is provision of home oxygen a safe alternative for management?</td>
</tr>
<tr>
<td>20a.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does the use of antibiotic medication improve clinically relevant end-points?</td>
</tr>
<tr>
<td>20b.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does the use azithromycin medication improve clinically relevant end-points?</td>
</tr>
<tr>
<td>20c.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does the use of antibiotic medication in infants who are at risk of developing bronchiectasis, improve clinically relevant end-points?</td>
</tr>
<tr>
<td>21a.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does the use of non-oral hydration improve clinically relevant end-points?</td>
</tr>
<tr>
<td>21b.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, what forms of non-oral hydration improve clinically relevant end-points</td>
</tr>
<tr>
<td>21c.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does limiting the volume of non-oral hydration impact on clinical relevant end-points?</td>
</tr>
<tr>
<td>22.</td>
<td>In infants presenting to hospital or hospitalised with bronchiolitis, does infection control practises improve clinically relevant end-points?</td>
</tr>
</tbody>
</table>
Clinical Recommendations Evidence Summaries

1. **Infants can be diagnosed with bronchiolitis if they have an upper respiratory tract infection followed by onset of respiratory distress with fever, and some of: cough, tachypnoea, retractions and diffuse crackles or wheeze on auscultation.**

 Strength of Recommendation:

 NHMRC: C

 GRADE: WEAK

 A systematic review and guideline (10) and two prospective observational studies (11, 12) provide recent evidence for the clinical features that make the diagnosis of bronchiolitis likely. The major factors which were predictive were fever, cough, tachypnoea, retractions and wheeze. Other major international guidelines support the clinical diagnosis of bronchiolitis (10, 13).

2. **Clinicians should consider as risk factors for more serious illness: gestational age less than 37 weeks; chronological age at presentation less than 10 weeks; exposure to cigarette smoke; breast feeding for less than two months; failure to thrive; having chronic lung disease; having chronic heart and/or neurological conditions; being an indigenous infant, and should take these into account when managing infants with bronchiolitis.**

 Strength of Recommendation:

 NHMRC: C

 GRADE: CONDITIONAL

 Twenty-two observational studies and two matched case control studies (14-37) provided a diverse patient population and methods, but provide consistent outcomes highlighting chronological age, breast feeding for less than 2 months, poor nutrition, exposure to tobacco smoke, and existing lung disease as being risk factors for more severe bronchiolitis. Two observational studies identify indigenous infants of Australia and New Zealand as being at higher risk (16, 22).

3. **Routine CXR is not recommended as it does not improve management in infants presenting with bronchiolitis, and may lead to treatments of no benefit.**

 Strength of Recommendation:

 NHMRC: D

 GRADE: CONDITIONAL

 Key data on the clinical utility of CXR in infants presenting to or admitted to hospital with bronchiolitis comes from two systematic reviews (Bordley et al (38), including 13 RCTs and three prospective observational studies; Williams et al (39), including five prospective observational studies, one cohort study and two retrospective studies); a systematic review and guideline (10); a qualitative review of the literature (40); two prospective observational studies (41, 42), with Yong et al (42) also including an economic evaluation. Despite the heterogeneity of the studies, outcomes consistently confirm that CXR is not of clinical value in typical bronchiolitis, adds cost, and increases the risk of unnecessary antibiotic use.

4. **There is no role for blood tests in managing infants presenting to hospital and hospitalised with bronchiolitis. Routine bacteriological testing of blood and urine is not recommended.**
In infants less than two months of age presenting to hospital or hospitalised with bronchiolitis with a temperature over 38 degrees, there is a low risk of UTI. If clinical uncertainty exists clinicians may consider collecting a urine sample for microscopy, culture and sensitivity looking for the concurrent presence of UTI.

Strength of Recommendation:
NHMRC D
GRADE CONDITIONAL

A systematic review (38) (which assessed 82 studies) found that studies did not define clear indications for testing or the impact of testing on patient outcomes. A systematic review and guideline (10) found no utility in routine testing. Studies assessing the utility of blood tests in infants with bronchiolitis (38, 43-45) have assessed a variety of markers with none demonstrating clinical benefit.

Studies assessing the incidence of UTI in infants hospitalised with bronchiolitis included a systematic review of infants less than 90 days of age with bronchiolitis (46) including 11 studies (six prospective and five retrospective) and a prospective cohort study of infants with bronchiolitis between 2 and 12 months of age (47). The incidence of UTI in infants under 90 days was 3.3% and those aged 2 to 12 months was 2% (48). All studies excluded infants who were severely unwell.

5. In infants with bronchiolitis, routine use of viral testing is not recommended for any clinically relevant end-points, including cohorting of bronchiolitis patients.

Strength of Recommendation:
NHMRC C
GRADE CONDITIONAL

Data was obtained from one systematic review (38) which included 82 trials (17 were primary articles on diagnosis of bronchiolitis and 65 were reports of treatment or prevention trials); one systematic review and guideline (10); one controlled clinical trial; and nine prospective observational studies (18, 49-57). The viral panels used were not consistent. There is non-uniformity of study design and outcomes, few studies look at clinical outcomes and where they did, there is lack of evidence of any benefit to clinically relevant outcomes, and routine viral testing cannot be recommended.

6. For infants presenting to hospital or hospitalised with bronchiolitis, there is insufficient evidence to recommend the use of a scoring system to predict need for admission or hospital length of stay.

Strength of Recommendation:
NHMRC D
GRADE WEAK

The evidence is based on eight prospective observational cohort studies and two cross sectional observational studies (58-64) which were conducted using a variety of scoring systems (including Kristjansson Respiratory Score, modified Wood’s Clinical Asthma Score (M-WCAS) and Tal severity Score, modified Tal, Respiratory Distress Assessment Instrument (RDAI) and the Children’s Hospital of Wisconsin Respiratory Score (CHWRS) in addition to the use of specific identified clinical parameters as a scoring system). Limitations to the studies included low number of patients, single centre based studies, unique clinical settings and varied use/comparison of multiple scoring systems across the eight studies. Outcome measures were most often inter-rater reliability, with only a few clinically relevant
outcomes used. None of the studies showed benefit for any clinically relevant outcomes (such as need for admission, length of hospital stay, need for ICU admission and representation after discharge from the ED).

7. **Oxygen saturations, adequacy of feeding, age (infants younger than eight weeks), and social support should be considered at the time of discharge as a risk for representation. There is insufficient evidence to recommend absolute discharge criteria for infants attending the ED, or hospitalised with bronchiolitis.**

Strength of Recommendation:

NHMRC PRACTICE POINT
GRADE WEAK

The evidence base for discharge criteria comes from three systematic reviews and guidelines (10, 65, 66) and two multi-centre prospective observational studies (67, 68) involving over 3000 infants. There is insufficient evidence to determine absolute criteria for safe discharge from hospital or the ED, of infants with bronchiolitis, but recommend oxygen saturations and adequacy of feeding are the most important criteria.

8a. **Do not administer beta 2 agonists to infants, less than or equal to 12 months of age, presenting to hospital or hospitalised with bronchiolitis.**

Strength of Recommendation:

NHMRC A
GRADE STRONG

8b. **Do not administer beta 2 agonists to infants, less than or equal to 12 months of age, presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy.**

Strength of Recommendation:

NHMRC D
GRADE WEAK

Data regarding the administration of beta 2 agonists (with the exclusion of adrenaline) in infants presenting to hospital or hospitalised with bronchiolitis comes from one Cochrane systematic review (69) (30 RCTs, n=1992) and three systematic reviews and guidelines (10, 13, 65). Subsequent to the meta-analysis there has been one further small RCT (70) (n=56) which does not change the findings of the meta-analysis.

Infants with bronchiolitis administered beta 2 agonists do not have any change in rate of hospitalisation (11.9% in beta 2 agonist group vs. 15.9% in placebo group, Odds ratio (OR) 0.75, 95% confidence interval (CI) 0.46 to 1.21, n=710), length of stay (mean difference (MD) 0.06 days, 95% CI -0.27 days to 0.39 days, n=349), or oxygen saturation (MD -0.43%, 95% CI -0.92% to 0.06%, n=1,242). Administration of beta 2 agonists results in a statistical improvement in short term clinical severity scores (standard MD (SMD) -0.30, 95% CI -0.54 to -0.05, n=1,086). However, this marginal change is not associated with any clinically relevant improvement.

Administration of beta 2 agonists in RCTs resulted in the following adverse events: tachycardia, hypertension, decreased oxygen saturation, flushing, hyperactivity, prolonged cough, and tremor.

There is no good quality evidence evaluating the effect of beta 2 agonists in infants with bronchiolitis and a personal or family history of atopy. Given the high quality (NHMRC A,
GRADE strong) recommendation not to use beta 2 agonists in infants presenting to or hospitalised with bronchiolitis, beta 2 agonists should only be used in infants with a personal or family history of atopy as part of an RCT.

Previously trials of beta 2 agonists have been suggested as a clinical option. However, given the high level of evidence (NHMRC A, GRADE strong) demonstrating no benefit of beta 2 agonists in infants presenting to or hospitalised with bronchiolitis, and that there is no well-established way to determine an “objective method of response” to beta 2 agonists in bronchiolitis, this option is no longer recommended. Although it is true that a small subset of children with bronchiolitis may have reversible airway obstruction resulting from smooth muscle constriction, attempts to define a subgroup of responders have not been successful to date. If a clinical trial of bronchodilators is undertaken, clinicians should note that the variability of the disease process, the host’s airway, and the clinical assessments, particularly scoring, would limit the clinician’s ability to observe a clinically relevant response to bronchodilators (13).

The sensitivity analysis of the Cochrane systematic review showed no significant subgroup effect in studies involving inpatients versus outpatients (infants in the outpatient studies tended to be older). Limiting the analysis to infants aged less than or equal to 12 months did not improve heterogeneity. Furthermore, infants less than or equal to 12 months of age are included in the Cochrane systematic meta-analysis for the critical outcomes of rate of hospitalisation and length of stay.

A smaller under-powered Cochrane systematic meta-analysis (71) (eight studies, n=281) of short acting beta 2 agonists for recurrent wheeze in children under two years of age has also found that there is no current clinical benefit.

The high quality (NHMRC A, GRADE strong) recommendation not to use beta 2 agonists in infants presenting to or hospitalised with bronchiolitis should be extended to infants less than or equal to 12 months of age.

9. Do not administer adrenaline/epinephrine to infants presenting to hospital or hospitalised with bronchiolitis.

Strength of Recommendation:
NHMRC B
GRADE STRONG

Data regarding the administration of adrenaline/epinephrine in infants presenting to hospital or hospitalised with bronchiolitis comes from one Cochrane systematic review (72) (19 RCTs, n=2,256) and two systematic reviews and guidelines (13, 65). Subsequent to the Cochrane systematic review there has been three further RCTs comparing adrenaline/epinephrine to a nasal decongestant or beta-2-agonists (Livni et al (73), n=65; Modaressi et al (74), n=40; Simsek-Kiper et al (75), n=75), or to placebo in ambulatory (Sarrell et al (76), n=330) and inpatient settings (Skjerven et al (77), n=404), that have not changed the findings of the meta-analysis.

Infants with bronchiolitis administered adrenaline/epinephrine in ambulatory settings have a significant reduction in rate of hospitalisation within the first 24 hours after initiation of treatment (risk ratio (RR) 0.67, 95% CI 0.50 to 0.89, n=995). However this is not the case when only trials at low risk of bias are analysed (RR 0.77, 95% CI 0.56 to 1.07, n=842), in
the most recent study (Sarrell et al (76), n=330), or when hospitalization is analysed over the first seven days after initiating treatment (RR 0.81, 95% CI 0.63 to 1.03, n=875).

Evidence from the Cochrane meta-analysis and the recent high quality RCT (Skjerven et al (77), n=404) do not suggest that administering adrenaline/epinephrine in inpatients with bronchiolitis changes hospital length of stay or readmission rates.

Administration of adrenaline/epinephrine in RCTs resulted in the adverse events of tachycardia, hypertension, pallor, vomiting and tremor.

10. **Do not administer nebulised hypertonic saline in infants presenting to hospital or hospitalised with bronchiolitis.**

 Strength of Recommendation:
 - NHMRC D
 - GRADE CONDITIONAL

Data regarding the administration of nebulised hypertonic saline in infants presenting to hospital or hospitalised with bronchiolitis is based on one Cochrane systematic review of 11 RCTs (78) and a further nine additional RCTs (79-87). Subsequent to the Cochrane systematic review there have been three further systematic reviews (88-90) and the newer trials have been included in an updated systematic review by the Cochrane authors (91) and a live meta-analysis (92).

Infants admitted to hospital with bronchiolitis and administered nebulised hypertonic saline have a reduced length of stay of 0.45 of a day (95% CI -0.74 to -0.14 days; 15 studies, n=1,922). However there is considerable heterogeneity in this overall result (I2=78%). Removal of two studies with overall length of stay considerably longer than current clinical practice in Australia and New Zealand, and with a primary outcome definition considerably different than that used in Australia and New Zealand for discharge (no respiratory signs or symptoms for 12 hours), partially explains the heterogeneity and results in a pooled estimate suggesting no effect. Furthermore, analysis restricted to the four largest trials, all at lower risk of bias, again suggests no benefit (89). A number of studies included in the meta-analysis also appear to be unbalanced with regards to duration of illness prior to treatment in the hypertonic saline arms.

Infants presenting to hospital with bronchiolitis and administered nebulised hypertonic saline in the ED have a reduced admission rate into hospital of 20% (RR 0.80, 95% CI 0.67 to 0.96; 7 RCTs, n=951). The seven RCTs reporting this outcome included a range of regimens, strengths and added medications. Furthermore, subgroup analysis suggests that nebulised hypertonic saline is not effective in the studies using just one to two doses compared with those using three or more (one to two doses RR 0.93, 95% CI 0.73 to 1.20, 4 RCTs, n=358; three or more doses RR 0.67, 95% CI 0.52 to 0.87, 3 RCTs, n=593; p value for subgroup comparison = 0.07).

In infants receiving nebulised hypertonic saline there appears to be no increased risk of adverse events or change in readmission rates following discharge from EDs.

Evidence from the largest individual studies, and from the meta-analysis, do not consistently provide evidence of improved length of stay following the use of nebulised hypertonic saline. While there is weak evidence of reduced admission rates following the use of nebulised hypertonic saline, there is heterogeneity in the treatment regimens used, and a suggestion
that one to two dose regimens are ineffective. Given the lack of long term effect of nebulised hypertonic saline on length of stay the routine use of nebulised hypertonic saline in the ED to reduce admissions is not supported by the current evidence base and nebulised hypertonic saline should only be used in infants with bronchiolitis as part of an RCT.

11a. Do not administer systemic or local glucocorticoids to infants presenting to hospital or hospitalised with bronchiolitis.

Strength of Recommendation:
NHMRC B
GRADE Strong

11b. Do not administer systemic or local glucocorticoids to infants presenting to hospital or hospitalised with bronchiolitis, with a positive response to beta 2 agonists.

Strength of Recommendation:
NHMRC D
GRADE WEAK

11c. Do not administer a combination of systemic or local glucocorticoids and adrenaline/epinephrine to infants presenting to hospital or hospitalised with bronchiolitis.

Strength of Recommendation:
NHMRC D
GRADE WEAK

Data regarding the administration of systemic or local glucocorticoids (nebulisation, oral, IM or IV) in infants presenting to hospital or hospitalised with bronchiolitis comes from one Cochrane systematic review (Fernandes et al (93), 17 RCTs, n=2,596) and three systematic reviews and guidelines (10, 13, 65). Subsequent to the Cochrane systematic review there have been two further RCTs (Alansari et al (94), n=200; Jartti et al (95), n=79).

Infants with bronchiolitis administered glucocorticoids do not have different rates of hospitalisation (day one RR 0.92, 95% CI 0.78 to 1.08, n=1,762; day seven RR 0.86, 95% CI 0.70 to 1.06, n=1,530) or clinically significant differences in length of stay (mean difference -0.18, 95% CI -0.39 to 0.04, n=633).

There is no good quality evidence evaluating the effect of glucocorticoids in infants with bronchiolitis and a positive response to beta 2 agonists. Furthermore there is no good quality evidence evaluating the effect of glucocorticoids in infants with a personal or family history of atopy. Given the high quality (NHMRC B, GRADE strong) recommendation not to use glucocorticoids in infants presenting to or hospitalised with bronchiolitis, glucocorticoids should only be used in infants with a positive response to beta 2 agonists as part of an RCT. Adrenaline/epinephrine is not recommended for use in infants presenting to or hospitalised with bronchiolitis (NHMRC B, GRADE strong). This recommendation is based on one Cochrane systematic review (Hartling et al (72), 19 RCTs, n=2,256), three systematic reviews and guidelines (10, 13, 65) and seven subsequent RCTs (73-77, 96, 97).

Evidence for the administration of the combination of glucocorticoids and adrenaline/epinephrine in infants presenting to or hospitalised with bronchiolitis comes from a single multi-centre RCT conducted in eight EDs in Canada (Plint et al (98), n=800). This trial compared adrenaline and high dose dexamethasone in a factorial design. Admission rates in unadjusted analysis suggested a possible benefit in the combination arm (adrenaline/epinephrine and glucocorticoid admission on day of enrolment (RR 0.65, 95% CI
0.41 to 1.04; day 7 RR 0.65, 95% CI 0.45 to 0.95). However when adjusted for multiple comparisons in the factorial design this was no longer significant (adrenaline/epinephrine and glucocorticoid admission on day of enrolment RR 0.65, 95% CI 0.37 to 1.15; day 7 RR 0.65, 95% CI 0.41 to 1.03).

Given the evidence base for the single interventions, and the exploratory nature of the findings in the Plint trial (98) combination treatment with glucocorticoids and adrenaline/epinephrine should only be used in infants with bronchiolitis as part of an RCT.

12a. Consider the use of supplemental oxygen in the treatment of hypoxic (oxygen saturations less than 92%) infants with bronchiolitis.

Strength of Recommendation:

NHMRC C
GRADE CONDITIONAL

12b. In uncomplicated bronchiolitis oxygen supplementation should be commenced if the oxygen saturation level is sustained at a level less than 92%. At oxygen saturation levels of greater than or equal to 92%, oxygen therapy should be discontinued.

Strength of Recommendation:

NHMRC C
GRADE CONDITIONAL

In evaluating the effect of oxygen administration for infants with bronchiolitis the evidence is based on a systematic review (99), a systematic review and guideline (13), a prospective observational case series of 68 infants(100) and a retrospective observational cohort study of 127 infants (101). There was low to very low level evidence for the use supplemental oxygen although the evidence based guideline formed a weak recommendation based on low level evidence and reasoning from first principles (13). There was no evidence of the effect of oxygen therapy on readmission to hospital or on feeding difficulties. There is no evidence of the benefit of oxygen in children without hypoxia.

The benefit of supplemental oxygen therapy has not been specifically studied - rather there is an assumption about the benefits of oxygen and the observational studies have principally looked at length of time of administration and feeding difficulties as a gauge of effectiveness. Therefore oxygen therapy is based on practice by first principles and low to very low-grade evidence. The evidence is applicable to the Australian and New Zealand setting.

The evidence relating to the role of oxygen saturations in patient management is based on two systematic reviews (99, 102), a systematic review and guideline (13) and two RCTs of 828 infants (103, 104). Additional evidence is from a prospective observational case series of 68 infants (100) and three retrospective observational studies (101, 105, 106). The absolute level of oxygen saturation for supplemental oxygen therapy to commence with the threshold has ranged in these studies from 90 - 94%.

For the critical outcome of admission to hospital there is moderate evidence that oxygen saturation levels affects the decision to admit independently of other factors including signs of respiratory distress.

For the critical outcome of length of stay in hospital there is low level evidence that oxygen saturation targets prolong length of stay with a target of less than 92% established as a need for commencement of oxygen supplementation.
For the important outcome of readmission there is high level evidence that oxygen level saturations do not affect readmissions to hospital.

For the important outcome of feeding difficulties there is very low evidence for the impact of oxygen saturation targets.

To date, neither of the RCTs have reported long-term neurodevelopmental outcomes.

13. **Routine use of continuous pulse oximetry is not required for medical management of non-hypoxic (saturations greater than or equal to 92%) infants not receiving oxygen, or stable infants receiving oxygen.**

Strength of Recommendation:

- **NHMRC:** C
- **GRADE:** CONDITIONAL

The evidence is based on two high quality evidence reviews (13, 99). In addition, there was one randomised, double-blind, parallel-group trial (104) involving 213 infants, one randomised, parallel-group, superiority clinical trial (107) of 161 infants to either continuous vs. intermittent pulse oximetry and one prospective observational study (100) of 68 patients evaluating discharge oxygen saturation levels. A further three retrospective studies (101, 105, 106) involved 439 infants.

For the critical outcome of length of stay there is moderate evidence that continuous monitoring of pulse oximetry increases hospital length of stay. A prospective observational study (108) subjects with bronchiolitis demonstrated significantly lower nocturnal baseline SpO2 than control infants without lung disease or upper airway obstruction on admission which recovered during hospitalisation.

For the critical outcome threshold for discharge oxygen saturations there is low quality evidence on the comparative effect of different discharge oxygen saturation thresholds. For the critical outcome frequency of nocturnal desaturations there is very low quality evidence to indicate that the frequency of nocturnal desaturations prolongs length of stay. For the important outcome of feeding there is very low quality evidence that the disease course or hospital length of stay is altered by maintaining feeding. For the important outcome of cost there was no evidence of reduced cost savings in those infants admitted with bronchiolitis on continuous oximetry monitoring.

14. **HFNC in bronchiolitis can be considered in the inpatient setting in children with bronchiolitis with hypoxia (oxygen saturations less than 92%). Its use in children without hypoxia should be limited to the RCT setting only.**

Strength of Recommendation:

- **NHMRC:** C
- **GRADE:** CONDITIONAL

There have been limited studies on HFNC in children with bronchiolitis during inpatient stay outside of the paediatric ICU (PICU). A Cochrane systematic review (109) one systematic review and guideline (13), one RCT (110), two prospective studies (111, 112), four non-systematic reviews (113-116) and one retrospective cohort review (117) all provide low to very low level evidence for the benefit of HFNC. A prospective interventional study of 14 infants with bronchiolitis demonstrates reduction in work of breathing receiving HFNC (118).

There are insufficient studies and patients investigated to recommend HFNC as a standard therapy in a general paediatric unit.
For the critical outcome of length of stay in hospital there is low quality evidence that HFNC oxygen improves length of stay in hospital.

For the critical outcome for rate of PICU admission there is low quality evidence that HFNC oxygen reduces PICU admission rates.

For the important outcome of adverse events there is very low evidence that HFNC oxygen is safe.

For the important outcome of cost there is very low evidence that oxygen administered via HFNC may reduce overall health care cost, with the potential to reduce patient transfers both between hospitals and to the PICU.

15. **Chest physiotherapy is not recommended for routine use in infants with bronchiolitis.**
Strength of Recommendation:
NHMRC B
GRADE STRONG

There is one Cochrane systematic review (119) with nine clinical trials including 891 patients on the topic. In addition there is one low quality RCT (120) two prospective clinical trials (121, 122) and three observational trials (123-125) of very low quality and one systematic review and guideline (10). For the critical outcome of change in severity status of bronchiolitis there is moderate evidence that physiotherapy does not alter severity. For the critical outcome of time to recovery/clinical stability there is high quality evidence that physiotherapy does not improve recovery or stability. For the critical outcome of oxygen saturation levels there is very low level evidence of physiotherapy improving this outcome. For the important outcome of duration of oxygen supplementation there is high quality evidence that duration is not altered by physiotherapy. For the important outcome of length of hospital stay there is high level evidence that length of stay is not altered by physiotherapy. For the important outcome of complications of therapy there is high-level evidence of minimal adverse effects resulting from physiotherapy. For the important outcome of heart rate variability there is very low level evidence that heart rate variability is modified by physiotherapy.

16a. **Nasal suction is not recommended as routine practice in the management of infants with bronchiolitis.**Superficial suction may be considered to assist with feeding.
Strength of Recommendation:
NHMRC D
GRADE CONDITIONAL

16b. **Deep nasal suction for the management of bronchiolitis is not recommended.**
Strength of Recommendation:
NHMRC D
GRADE CONDITIONAL

There is only one retrospective comparative study (125) of 740 patients examining suction types and frequency. Three non-systematic reviews or guidelines refer to the use of suction but without provision of references and are rated very low. For the critical outcome of length...
of hospital stay there is low level evidence that the use of deep nasal suction increases length of hospital stay while non-invasive frequent suction may decrease length of stay. There was low level evidence for the important outcome of increased adverse events.

17. Routine nasal saline drops are not recommended. Trial of intermittent saline drops may be considered at time of feeding.

Strength of Recommendation:

NHMRC PRACTICE POINT
GRADE WEAK

There is no Cochrane review. Two RCTs use administration of nasal saline as the control therapy in chest physiotherapy techniques (120) or phenylephrine nasal drops (126). A guideline (127) and a review article (128) recommend nasal saline as a practice point. Nasal saline drops have not been demonstrated to improve outcomes in bronchiolitis but may be considered for use particularly prior to feeding (breast or bottle). No evidence is available to demonstrate benefit or harm.

18. Nasal CPAP therapy for infants with bronchiolitis may be considered for the management of infants.

Strength of Recommendation:

NHMRC C
GRADE CONDITIONAL

One Cochrane systematic review (129) analysed two RCTs with a total of 50 patients with low level of evidence and high risk of biases. Relevant clinical outcomes, such as intubation rates, were addressed and a trend towards reduction in intubations was shown. A recent prospective observational study (130) of low quality evaluated general paediatric ward administration of nCPAP. A retrospective study (131) of very low quality compared HFNC to nCPAP in the ICU setting only. Two recent systematic reviews (116, 132) analysed the use of nCPAP for bronchiolitis. All studies are inconsistent as they evaluated different populations (PICU vs. ward) and interventions (HFNC, nCPAP). There was no evidence for the effect of nCPAP on the important outcome of duration of ED length of stay.

19. After a period of observation, infants at low risk for severe bronchiolitis can be considered for discharge on home oxygen as part of an organised ‘Home Oxygen Program’ which has clear ‘Return to Hospital’ advice.

Strength of Recommendation:

NHMRC C
GRADE CONDITIONAL

There have been no systematic reviews on this question. The evidence is based on two RCTs of 136 infants both with methodological flaws. One trial (133) was stopped before the enrolment of the desired number of patients in their sample-size calculation was achieved and one trial (134) had very low numbers to compare the two groups in terms of evaluating the cost savings plus the patients were recruited over a single bronchiolitis season. Additional evidence comes from one prospective observational study (135) one retrospective comparative study (136) and three retrospective chart reviews (137-139). For the critical outcome of length of stay in hospital there is very low quality evidence of a reduced length of stay in those treated with home oxygen therapy and there is very low evidence for the critical outcome of the total length of oxygen therapy. For the important outcome of cost savings there is very low quality evidence of reduced costs in those treated with home oxygen therapy. For the critical outcome of readmission within seven days there is very low quality
evidence of a reduced readmission rate in those treated with home oxygen therapy. For the important outcome of adverse events there is very low quality evidence of no increase in adverse events in those treated with home oxygen therapy. All studies have had exclusions of infants with factors that place them at risk of severe disease and the evidence to date has indicated no increased risk of harm in infants treated. However, the studies have been underpowered or only observational with risk of imprecision and inconsistency. The true effect on harm has not been established.

20a. Do not use antibiotics to treat infants with bronchiolitis.
Strength of Recommendation:
NHMRC B
GRADE CONDITIONAL

20b. Do not use azithromycin for treatment of infants admitted to hospital with bronchiolitis.
Strength of Recommendation:
NHMRC B
GRADE CONDITIONAL

20c. Do not use azithromycin for treatment of infants admitted to hospital with bronchiolitis who are at risk of developing bronchiectasis.
Strength of Recommendation:
NHMRC C
GRADE CONDITIONAL

Two Cochrane systematic reviews (140, 141) and a single RCT of 40 infants (142) showed no benefit of antibiotics for treating bronchiolitis, in terms of hospital length of stay and hospital readmission rates (140) or persisting symptoms (141). The risk of secondary bacterial infection in bronchiolitis is very low and there is potential harm of antibiotics use from adverse reactions and increased antibiotic resistance.

One Cochrane systematic review containing three RCTS (140) shows that there is no difference in length of stay, PICU admission, or symptom resolution for those treated with azithromycin versus placebo for infants hospitalised with bronchiolitis.

There is low quality evidence (140) that there is no difference in length of stay, PICU admission, or symptom resolution for those treated with azithromycin versus placebo for infants hospitalised with bronchiolitis.

One RCT of azithromycin versus placebo, once a week for three weeks, in 219 indigenous infants enrolled in Australia and New Zealand found no difference in length of hospital stay, symptoms at 21 days, adverse events or readmission rates at six months (143). There are no reports on bronchiectasis as an outcome.

21a. Supplemental hydration is recommended for infants who cannot maintain hydration orally.
Strength of Recommendation:
NHMRC PRACTICE POINT
GRADE WEAK
A Cochrane systematic review(144) of benefit versus harm from advice to increase fluid intake for treating acute respiratory infections was unable to identify any evidence from RCTs in the primary care or outpatient setting.

21b. Both NG and IV routes are acceptable means for non-oral hydration in infants admitted to hospital with bronchiolitis.

Strength of Recommendation:

NHMRC B
GRADE STRONG

A large RCT(145) of 759 infants showed no difference in mean length of stay for infants with bronchiolitis treated with IV hydration vs. NG feeds; however there was a higher likelihood of success of first insertion of NG tubes versus IV cannulae.

21c. There is insufficient evidence to recommend a specific proportion of maintenance fluid. There is a risk of fluid overload and judicious and vigilant use of hydration fluid is recommended. Isotonic fluid is recommended.

Strength of Recommendation:

NHMRC PRACTICE POINT
GRADE WEAK

Serious concerns about risk of hyponatraemia in moderate bronchiolitis (146) have prompted caution about use of hypotonic IV fluids in infants with bronchiolitis. Regimens of fluid volumes, from restricted to liberal, have been used with little evidence supporting their use.

22. Hand hygiene is the most effective intervention to reduce hospital acquired infections and is recommended. There is inadequate evidence for the benefits of cohorting bronchiolitic patients.

Strength of Recommendation:

NHMRC B
GRADE WEAK

The current evidence is derived from observational studies (147-150). No RCT on containing common viral infections such as RSV by different infection control practices in ED or general paediatric ward setting is available. The Cochrane systematic review (151) on this topic focuses on different pandemic viral infections affecting a range of population in a variety of settings. This evidence could be extrapolated as indirect evidence for infants with bronchiolitis secondary to common respiratory viral infections for the outcome of nosocomial infection rates.
Question 1: GRADE Evidence Summary

Question 1: In infants presenting to hospital what factors in the history and physical examination contribute to a differential diagnosis of bronchiolitis?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Diagnosis of bronchiolitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2: Sensitivity and specificity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Is there is insufficient evidence to make a recommendation?

Evidence statement
A systematic review and guideline and two prospective observational studies provide recent evidence for the clinical features that make the diagnosis of bronchiolitis likely. The major factors which were predictive were fever, tachypnoea, retractions and wheeze. Other major international guidelines support the clinical diagnosis of bronchiolitis.

Major guidelines all suggest a clinical picture of bronchiolitis but site no supportive evidence for the predictive value of these clinical findings.

3. What benefit will the proposed intervention/action have?

Evidence statement
The combination of cough, wheeze and retractions demonstrate RSV positive bronchiolitis (as opposed to bronchiolitis from other viruses) with a sensitivity of 0.8.

Judging the benefits in context
The evidence is applicable and generalizable to the New Zealand and Australian health settings.

4. What harm might the proposed intervention/action do?

Evidence statement
Single observational study with limited numbers.

Judging the harms in context
Risks of missing diagnosis of other serious conditions such as cardiac failure remains, but evidence for other clinical or test features for diagnoses these in this context are missing.

5. What is the likely balance between good and harm?

Evidence statement
Clinical diagnosis is reasonably accurate but awareness of differential diagnoses needs to be maintained.

Judging the balance of benefits and harms in context
Given the wealth of clinical experience within the bronchiolitis working party, I am confident that clear guidelines around diagnosis of bronchiolitis will be able to be made around consensus of opinion.

- Benefits clearly outweigh harms: Recommend
- Benefits probably outweigh harms: Consider
- Not known: Make a recommendation for research (see 8 below)
- Benefits probably don't outweigh harms: Consider against
- Harms probably outweigh benefits: CONDITIONAL
- Benefits clearly don't outweigh harms: Recommend against
- Harms clearly outweigh benefits: STRONG

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
This evidence is directly transferrable to the Australasian population.

Yes
Recommend/consider

Not known
Consider economic evaluation

No
Recommend/consider against

7. Final recommendation

Infants can be diagnosed with bronchiolitis if they have an upper respiratory tract infection followed by onset of respiratory distress with fever, and one or more of cough, tachypnoea, retractions and diffuse crackles or wheeze on auscultation.

Strength of recommendation
- STRONG
- CONDITIONAL
- WEAK

8. Recommendations for research

Research defining the positive and negative predictive values of clinical criteria for diagnosing bronchiolitis is needed. Especially that that gives strength to the ability to refute the diagnosis of bronchiolitis when other conditions are present (e.g. cardiac failure, immunodeficiency).
Question 1. In infants presenting to hospital what factors in the history and physical examination contribute to a differential diagnosis of bronchiolitis.

Evidence table ref:

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/ several Level III studies with a low risk of bias</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
<td></td>
</tr>
</tbody>
</table>

A systematic review and guideline and two prospective observational studies provide recent evidence for the clinical features that make the diagnosis of bronchiolitis likely. The major factors which were predictive were fever, cough, tachypnoea, retractions and wheeze. Other major international guidelines support the clinical diagnosis of bronchiolitis. Major guidelines all suggest a clinical picture of bronchiolitis but site no supportive evidence for the predictive value of these clinical findings.

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All studies consistent</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable (one study only)</td>
<td></td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very large</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Substantial</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Slight/Restricted</td>
<td></td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
<td></td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
<td></td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>Evidence statement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There is one prospective cohort study from USA assessing clinical predictors of RSV bronchiolitis infection in infants and children less than 36 months of age. One hundred and ninety seven patients were admitted to hospital with suspected RSV infection – all had viral testing. They identified cough, fever, wheeze, and retractions as independent predictors.

Major guidelines all suggest a clinical picture of bronchiolitis but site no supportive evidence for the predictive value of these clinical findings.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

Infants can be diagnosed with bronchiolitis if they have an upper respiratory tract infection followed by onset of respiratory distress with fever, and one or more of: cough, tachypnoea, retractions and diffuse crackles or wheeze on auscultation.

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>Body of evidence can be trusted to guide practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendation(s) but care should be taken in its application</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Practice Point</td>
<td></td>
</tr>
</tbody>
</table>

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

Further research should concentrate on risk factors for other conditions that may masquerade as bronchiolitis including immunodeficiency, congenital lung disease and cardiac anomalies.

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

Will this recommendation result in changes in usual care?	YES	NO
Are there any resource implications associated with implementing this recommendation?	YES	NO
Will the implementation of this recommendation require changes in the way care is currently organised?	YES	NO
Are the guideline development group aware of any barriers to implementation of this recommendation?	YES	NO
Question 2. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

<table>
<thead>
<tr>
<th>Question 2: In infants presenting to hospital with bronchiolitis, what are the risk factors for admission or severe disease (e.g. prolonged length of hospital stay, ICU admission, death)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Outcome measures:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Admission to hospital</td>
</tr>
<tr>
<td>Admission to ICU</td>
</tr>
<tr>
<td>Prolonged hospital length of stay</td>
</tr>
<tr>
<td>Death</td>
</tr>
</tbody>
</table>

2. Is there sufficient evidence to make a recommendation?

Evidence statement:
Twenty two observational studies and two matched case control studies provided a diverse patient population and methods, but provide consistent outcomes. Two observational studies included indigenous Australians and New Zealanders. Many studies focussed on individual risk factors (e.g. prematurity, cigarette smoke exposure, chronological age at presentation) with diverse inclusion criteria and outcomes. Despite the number of studies there are only a few studies supporting each risk factor, but findings were consistent. Significant inconsistency was demonstrated in the role of RSV infection as a risk factor.

3. What benefit will the proposed intervention/action have?

Evidence statement:
Gestational age less than 37 weeks; chronological age at presentation less than 10 weeks; postnatal exposure to cigarette smoke; breast feeding for less than two months; failure to thrive; being of indigenous origin; having chronic lung disease should all be considered as risk factors for more serious illness.

Quality of evidence
LOW

Judging the benefits in context
Benefit of ensuring clinicians think about the management more carefully in those thought to be at high risk. No harms in applying this.

4. What harm might the proposed intervention/action do?

Evidence statement:
Clinicians should consider the presence of any of the risk factors when making management decisions in infants with bronchiolitis.

Quality of evidence
LOW

Judging the harms in context
No harms.

5. What is the likely balance between good and harm?

Evidence statement:
Reducing discharge of infants likely to deteriorate must be weighed against the risks of inpatient hospital stay.

Overall quality of evidence
LOW

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms	Consider	CONDITIONAL
Not known	Make a recommendation for research (see 8 below)	WEAK
Benefits probably don’t outweigh harms	Consider against	CONDITIONAL
Harms probably outweigh benefits		
Benefits clearly don’t outweigh harms	Recommend against	STRONG
Harms clearly outweigh benefits		

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
Implementable in Australia and New Zealand.

Recommend/consider

Yes
- Not known
 - Consider economic evaluation

No
- Recommend/consider against

7. Final recommendation

Clinicians should consider; gestational age less than 37 weeks; chronological age at presentation less than 10 weeks; postnatal exposure to cigarette smoke; breast feeding for less than two months; failure to thrive; having chronic lung disease; being an indigenous infant all as risk factors for more serious illness and should take these into account when managing infants with bronchiolitis.

Strength of recommendation
STRONG

8. Recommendations for research

Large cohort studies are needed to define the relative risk of particular factors and to define subpopulations with increased risk or other risk factors.
Question 2.

NHMRC Evidence Summary

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency (if only one study was available, rank this component as ‘not applicable’)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
<tr>
<td>3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
<tr>
<td>4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
<tr>
<td>5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))
2. Consistency C Some inconsistency, reflecting genuine uncertainty around question
3. Clinical Impact C Moderate
4. Generalisability C Evidence not directly generalisable to target population but could be sensibly applied
5. Applicability B Evidence applicable to Australian/New Zealand healthcare context with few caveats

Evidence statement
Multiple observational studies with inconsistencies in design and outcomes but consistency of findings. Evidence applicable to Australian and New Zealand settings and should guide practice with consideration to local ad patient factors.

| RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible) | OVERALL GRADE OF RECOMMENDATION |
| --- |
| Clinicians should consider; gestational age less than 37 weeks; chronological age at presentation less than 10 weeks; postnatal exposure to cigarette smoke; breast feeding for less than 2 months; failure to thrive; having chronic lung disease; being an indigenous infant all as risk factors for more serious illness and should take these into account when managing infants with bronchiolitis. | A Body of evidence can be trusted to guide practice |
| | B Body of evidence can be trusted to guide practice in most situations |
| | C Body of evidence provides some support for recommendations(s) but care should be taken in its application |
| | D Body of evidence is weak and recommendation must be applied with caution |
| | PP Practice Point |

UNRESOLVED ISSUES *(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)*

IMPLEMENTATION OF RECOMMENDATION *(Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)*

Will this recommendation result in changes in usual care?	YES	NO
Are there any resource implications associated with implementing this recommendation?	YES	NO
Will the implementation of this recommendation require changes in the way care is currently organised?	YES	NO
Are the guideline development group aware of any barriers to implementation of this recommendation?	YES	NO
Question 3. GRADE Evidence Summary

Question 3: In infants presenting to hospital or hospitalised with bronchiolitis, does performing CXR beneficially change medical management or clinically relevant end-points?

<table>
<thead>
<tr>
<th>Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1 Diagnostic accuracy</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O2 Cost savings (without compromise of diagnostic accuracy of alternate diagnoses)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O3 Indicator for administration of antibiotics</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O4 Readmission</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2. **Is there insufficient evidence to make a recommendation?**

Evidence statement

Key data on the clinical utility of CXR in infants presenting to or admitted to hospital with bronchiolitis comes from two systematic reviews (Bordley et al (38), including 13 RCTs and three prospective observational studies; Williams et al (39), including five prospective observational studies, one cohort study and two retrospective studies); a systematic review and guideline (10); a qualitative review of the literature (40); two prospective observational studies (41, 42), with Yong et al (42) also including an economic evaluation. Despite the heterogeneity of the studies, outcomes consistently confirm that CXR is not of clinical value in typical bronchiolitis, adds cost and increases the risk of unnecessary antibiotic use.

3. **What benefit will the proposed intervention/action have?**

Evidence statement

For the critical outcome of diagnostic accuracy, there is low quality evidence of a reduced length of stay in those patients who receive a CXR.

For the important outcome of cost saving, evidence of low quality indicates that avoiding CXR saves money.

For the important outcome on indication for administration of antibiotics, there is low quality evidence that suggests CXR is not useful in confirming the diagnosis of bronchiolitis, and that it leads to unnecessary antibiotic use.

Judging the benefits in context

The evidence is applicable and generalisable to the New Zealand and Australian health settings.

4. **What harm might the proposed intervention/action do?**

Evidence statement

For the important outcome of readmission rate there is low quality evidence of improved diagnostic accuracy in the infants who had a CXR taken.

Judging the harms in context

Evidence to date indicates no direct increased risk of harm in infants receiving a CXR, but with some increased risk of unnecessary antibiotic use. However the majority of studies have only been in mild or moderately unwell infants, and so the risk in severely unwell infants is unknown.

5. **What is the likely balance between good and harm?**

Evidence statement

Harms are likely to outweigh benefits.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms	Consider	CONDITIONAL
Not known	Make a recommendation for research (see 6 below)	WEAK
Benefits probably don't outweigh harms		
Harms probably outweigh benefits	Consider against	CONDITIONAL
Benefits clearly don't outweigh harms	Recommend against	
Harms clearly outweigh benefits		

6. **Is the intervention/action implementable in the New Zealand and Australian context?**

Summary statement

The evidence is implementable in Australia and New Zealand

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
<tr>
<td>No</td>
<td>Recommend/consider against</td>
</tr>
</tbody>
</table>

7. **Final recommendation**

Routine CXR does not improve management in infants presenting with simple bronchiolitis, and may lead to treatments of no benefit.

Strength of recommendation

<table>
<thead>
<tr>
<th>STRONG</th>
<th>CONDITIONAL</th>
<th>WEAK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Australasian Bronchiolitis Guideline 31 August 2016 34
Recommendations for research
Studies on children with more severe bronchiolitis are needed to define the role of CXR in this population.

Question 3. NHMRC Evidence Summary

Question 3. In infants presenting to hospital or hospitalised with bronchiolitis, does performing CXR beneficially change medical management or clinically relevant end-points?

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Key data on the clinical utility of CXR in infants presenting to or admitted to hospital with bronchiolitis comes from two systematic reviews (Bordley et al (38), including 13 RCTs and three prospective studies; Williams et al (39), including five prospective observational studies, one cohort study and two retrospective studies); a systematic review and guideline (10); a qualitative review of the literature (40); two prospective observational studies (41, 42), with Yong et al (42) also including an economic evaluation. Despite the heterogeneity of the studies, outcomes consistently confirm that CXR is not of clinical value in typical bronchiolitis, adds cost and increases the risk of unnecessary antibiotic use.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

2. Consistency (if only one study was available, rank this component as 'not applicable')

<table>
<thead>
<tr>
<th>Evidence regarding the use of CXRs is not consistent, due to the heterogeneity of the studies. Outcomes from Bordley et al (38) suggests that in mild disease, CXRs offer no information that is likely to affect treatment and should not routinely be performed. Data from two studies (41, 42) demonstrate that CXRs may lead to the use of antibiotics. Therefore more likely to be inappropriate use than to improve clinical outcomes and insufficient data exists to show that CXR films reliably distinguish between viral and bacterial disease or predict severity of disease. Yong et al (42) concludes that for infants with typical bronchiolitis, omitting radiography is cost saving without compromising diagnostic accuracy of alternate diagnoses and of associated pneumonia. Schuh et al (41) suggests that radiographs in children with typical bronchiolitis have limited value in children without severe distress or significant hypoxia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>That radiographs in children with typical bronchiolitis have no proven value in children with bronchiolitis outside the ICU setting, and may lead to treatments that are of no benefit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Studies were conducted in a number of countries including the USA, Canada, Europe and Israel using populations that are directly generalizable to patients with bronchiolitis seen in Australia and New Zealand.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>The results are applicable to the Australian and New Zealand healthcare context with few caveats.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
</tbody>
</table>
Evidence probably applicable to Australian/New Zealand healthcare context with some caveats

Evidence not applicable to Australian/New Zealand healthcare context

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
</tbody>
</table>

Evidence statement
For the critical outcome of diagnostic accuracy, there is low quality evidence of a reduced length of stay in those patients who receive a CXR.

For the important outcome of cost saving, evidence of low quality suggests that avoiding CXR saves money

For the important outcome on indication for administration of antibiotics, there is low quality evidence that suggests CXR is not useful in confirming the diagnosis of bronchiolitis, and that it leads to unnecessary antibiotic use

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)
Routine CXR does not improve management in infants presenting with simple bronchiolitis, and may lead to treatments of no benefit.

OVERALL GRADE OF RECOMMENDATION
A Body of evidence can be trusted to guide practice
B Body of evidence can be trusted to guide practice in most situations
C Body of evidence provides some support for recommendations(s) but care should be taken in its application
D Body of evidence is weak and recommendation must be applied with caution

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

Will this recommendation result in changes in usual care? YES NO
Some clinicians are currently using routine CXR.
Are there any resource implications associated with implementing this recommendation? YES NO
Will the implementation of this recommendation require changes in the way care is currently organised? YES NO
Are the guideline development group aware of any barriers to implementation of this recommendation? YES NO
Question 4. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 4: In infants presenting to hospital and hospitalized with bronchiolitis, does performing pathology tests (blood and urine) beneficially change medical management or clinically relevant end points.

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Length of stay</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>O2: Length of stay in ICU</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>O3: Death in ICU</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>O4: Diagnosis of bacterial co-infection</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>O5: Diagnosis of pneumonia</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>O6: Diagnosis of UTI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Is there insufficient evidence to make a recommendation?

Evidence statement
Evidence for diagnostic testing comes from a systematic review (38) that identified 82 studies. Bordley et al (38) found that studies did not define clear indications for testing or the impact of testing on patient outcomes.

Subsequent studies have indicated some risk of UTI in younger infants (47).

3. What benefit will the proposed intervention/action have?

Evidence statement
There is evidence from two cohort studies, one prospective and one retrospective, demonstrating that in febrile infants with a diagnosis of bronchiolitis, one from 2-12 months of age and the other in infants less than eight weeks (with RSV positive bronchiolitis) that the rate of UTI is 2% and 1.4% respectively. Another study with low evidence rating demonstrated that in febrile infants under 60 days of age with a diagnosis of bronchiolitis, the rate of UTI was 3.3%.

There is very low quality and inconsistent evidence that procalcitonin can predict the presence of co-infection in an infant with bronchiolitis. The clinical role of procalcitonin is yet to be defined.

With regards to length of stay, there was one study demonstrating that length of stay is not affected by measurement of CRP.

Judging the benefits in context
This is applicable to infants in Australia and New Zealand.

4. What harm might the proposed intervention/action do?

Evidence statement
Evidence has not suggested any adverse harm in children having a urine sample tested for UTI. There is a theoretical risk there will be false positives and therefore unnecessary antibiotics given.

The evidence for doing blood tests to look for co-infection is very low and of unknown clinical importance.

There is pain and discomfort associated with blood tests and invasive urine testing.

Judging the harms in context
For otherwise well febrile children with bronchiolitis the harms of blood testing and urine testing probably outweigh the benefits.

5. What is the likely balance between good and harm?

Evidence statement
It is likely that testing urine in infants with bronchiolitis will not cause any harm, but needs to be confined to the patients at highest risk.

Judging the balance of benefits and harms in context
The benefits are likely to outweigh the harm

Benefits clearly outweigh harms Recommend
Benefits probably outweigh harms Consider
Not known Make a recommendation for research (see 8 below)
Benefits probably don't outweigh harms Consider against
Harms probably outweigh benefits
Benefits clearly don't outweigh harms Recommend against
Harms clearly outweigh benefits

Overall quality of evidence
LOW

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
Yes Recommend/consider
Not known Consider economic evaluation
No Recommend/consider against
7. **Final recommendation**

<table>
<thead>
<tr>
<th>There is no role for blood tests in managing infants presenting to hospital and hospitalised with bronchiolitis. Routine bacteriological testing of urine or blood is not indicated.</th>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength of recommendation</td>
<td>STRONG</td>
</tr>
<tr>
<td>Weakened by</td>
<td>CONDITIONAL</td>
</tr>
<tr>
<td>Uncertain</td>
<td>WEAK</td>
</tr>
</tbody>
</table>

In infants less than 2 months of age who are hospitalised or in hospital for bronchiolitis with a temperature over 38 degrees, there is a low risk of UTI. If clinically uncertainty exists clinicians may consider collecting a urine sample for microscopy, culture and sensitivity looking for the concurrent presence of UTI.

8. Recommendations for research

More research needs to look into whether febrile (greater than 38°C) infants (less than or equal to 12 months) with a clear diagnosis of bronchiolitis have a concurrent UTI as this not only has implications for immediate treatment but also for further imaging of the urinary tract.

Research on the clinical role of new markers of bacterial infection is needed to define any role for them in the clinical environment.

Question 4. NHMRC Evidence Summary

| --- | --- |

1. **Evidence base** (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Evidence for diagnostic testing comes from a systematic review (38) that identified 82 studies. They found that studies did not define clear indications for testing or the impact of testing on patient outcomes.</th>
<th>A One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>A systematic review and Guideline (10) recommends against routine diagnostic testing.</td>
<td>B One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>Studies assessing the incidence of UTI in infants hospitalised with bronchiolitis included a systematic review of infants under 90 days of age with bronchiolitis (46) including 11 studies (6 prospective and 5 retrospective) a prospective cohort study of infants with bronchiolitis between 2 and 12 months of age (47).</td>
<td>C One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
<td></td>
</tr>
</tbody>
</table>

2. **Consistency** (if only one study was available, rank this component as “not applicable”)

<table>
<thead>
<tr>
<th>In the studies looking at urine, different age groups were looked at – less than 60days (48), less than 8 weeks (159) and 2-12 months (47).</th>
<th>A All studies consistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the studies looking for bacterial co infection using blood tests, one study looked at procalcitonin and one looked CRP, FBC and ESR and therefore no comment can be made on consistency.</td>
<td>B Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C Some inconsistency, reflecting genuine uncertainty around question</td>
<td></td>
</tr>
<tr>
<td>D Evidence is not consistent</td>
<td></td>
</tr>
<tr>
<td>NA Not applicable (one study only)</td>
<td></td>
</tr>
</tbody>
</table>

3. **Clinical impact** (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>There is moderate evidence from two cohort studies, one prospective and one retrospective, demonstrating that in febrile children with a diagnosis of bronchiolitis, one from 2-12 months of age and the other in infants less than 8 weeks (with RSV positive bronchiolitis) that the rate of UTI is 2% and 1.4% respectively. Another study with low evidence rating demonstrated that in febrile children under 60 days of age with a diagnosis of bronchiolitis, the rate of UTI was 3.3%. There is moderate evidence that blood tests do not impact clinical outcomes.</th>
<th>A Very large</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Substantial</td>
<td></td>
</tr>
<tr>
<td>C Moderate</td>
<td></td>
</tr>
<tr>
<td>D Slight/Restricted</td>
<td></td>
</tr>
</tbody>
</table>

4. **Generalisability** (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>They are mainly applicable to this guideline.</th>
<th>A Evidence directly generalisable to target population</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Evidence directly generalisable to target population with some caveats</td>
<td></td>
</tr>
<tr>
<td>C Evidence not directly generalisable to target population but could be sensibly applied</td>
<td></td>
</tr>
</tbody>
</table>
| D Evidence not directly generalisable to target population and...

Australasian Bronchiolitis Guideline 31 August 2016
Are the guideline development group aware of any barriers to implementation of this recommendation?

Will there be any resource implications associated with implementing this recommendation?

Will the implementation of this recommendation require changes in the way care is currently organised?

Are the guideline development group aware of any barriers to implementation of this recommendation?
Question 5. In infants presenting to hospital or hospitalised with bronchiolitis, does performing virological investigations beneficially change medical management or clinically relevant end-points?

1. Outcome measures: | Quality of evidence | Importance of outcome in making a decision |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH MOD LOW V. LOW Critical Important Not Important</td>
</tr>
<tr>
<td>O1 Hospital Admission</td>
<td>X</td>
</tr>
<tr>
<td>O2 Hospital Length of stay</td>
<td>X</td>
</tr>
<tr>
<td>O3 ICU admission</td>
<td>X</td>
</tr>
<tr>
<td>O4 Death</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2. Is there insufficient evidence to make a recommendation?

Evidence statement
Systematic review (38) reviewed 82 trials (17 reports on diagnosis of bronchiolitis and 65 reports of treatment or prevention) for utility of diagnostic testing in bronchiolitis and found no clear indications for testing nor impact on clinical outcomes. An RCT (56) has subsequently shown that clinician knowledge of viral study results at 12 hours does not influence clinical care over knowledge at four weeks. Eight prospective observational studies have looked at a variety of viral panels and outcomes with inconsistent results about the influence of RSV on disease severity or hospital length of stay. There is heterogeneity of study design and outcome measures but studies consistently show lack of influence on clinician management, or improved clinical outcomes due to patient cohorting by virus (RSV). A systematic review and guideline (10) recommends against routine viral testing.

3. What benefit will the proposed intervention/action have?

Evidence statement:
No clinical benefit has been demonstrated.

Judging the benefits in context
Cost savings and reduction in discomfort.

4. What harm might the proposed intervention/action do?

Evidence statement
Potential for hospital acquired infection.

Judging the harms in context
No evidence of increased hospital acquired infections, and simple means to limit spread exist.

5. What is the likely balance between good and harm?

Evidence statement
Benefits of limiting viral testing outweigh harms.

Judging the balance of benefits and harms in context
Benefits clearly outweigh harms Recommend STRONG
Benefits probably outweigh harms Consider CONDITIONAL
Not known Make a recommendation for research (see 8 below) WEAK
Benefits probably don’t outweigh harms Consider against CONDITIONAL
Harms probably outweigh benefits
Benefits clearly don’t outweigh harms Recommend against
Harms clearly outweigh benefits

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
Fully implementable in Australia and New Zealand.

Yes Recommend/consider
Not known Consider economic evaluation
No Recommend/consider against

7. Final recommendation

In infants with bronchiolitis, routine use of viral testing is not recommended for any clinically relevant end-points, including cohorting of bronchiolitis patients.

Strength of recommendation
STRONG
CONDITIONAL
WEAK

8. Recommendations for research

Research to determine if patient cohorting on virological results improves hospital transmission more than appropriate contact precautions is warranted.
Question 5. NHMRC Evidence Summary

Question 5: In infants presenting to hospital or hospitalised with bronchiolitis, does performing virological investigations beneficially change medical management or clinically relevant end-points?

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>B</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
</tbody>
</table>

Australasian Bronchiolitis Guideline 31 August 2016

41
Evidence statement
Evidence is consistent that viral testing does not improve or change clinical care, and inconsistent about the link to severity of disease, so cannot recommend use of virological testing.

RECOMMENDATION
In infants with bronchiolitis, routine use of viral testing is not recommended for any clinically relevant end-points, including cohorting of bronchiolitis patients.

OVERALL GRADE OF RECOMMENDATION
A Body of evidence can be trusted to guide practice
B Body of evidence can be trusted to guide practice in most situations
C Body of evidence provides some support for recommendations but care should be taken in its application
D Body of evidence is weak and recommendation must be applied with caution
PP Practice Point

UNRESOLVED ISSUES
(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION
[Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines]

Will this recommendation result in changes in usual care? YES
A number of sites currently undertake viral testing.

Are there any resource implications associated with implementing this recommendation? YES
Test resource savings if implemented. Increased resource usage if increased hospital transmission and infection.

Will the implementation of this recommendation require changes in the way care is currently organised? YES
Varies according to site.

Are the guideline development group aware of any barriers to implementation of this recommendation? YES
Cohorting practices exist in some sites based on the result of viral testing.

Australasian Bronchiolitis Guideline 31 August 2016 42
Question 6. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

<table>
<thead>
<tr>
<th>Question 6: For infants presenting to hospital or hospitalised with bronchiolitis, does use of a bronchiolitis scoring system beneficially change medical management or clinically relevant end-points?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Outcome measures:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>O1 Length of stay</td>
</tr>
<tr>
<td>O2 Inter rater Agreement</td>
</tr>
<tr>
<td>O3 Score Reliability</td>
</tr>
<tr>
<td>O4 Useful Predictor</td>
</tr>
</tbody>
</table>

2. **Is there is insufficient evidence to make a recommendation?**

Evidence statement
The evidence is based on eight prospective observational cohort studies and two cross sectional observational studies which were conducted using a variety of scoring systems (including Kristjansson Respiratory Score, modified Wood’s Clinical Asthma Score (M-WCAS) and Tal Severity Score, modified Tal, Respiratory Distress Assessment Instrument (RDAI) and the Children’s Hospital of Wisconsin Respiratory Score (CHWRS) in addition to the use of specific identified clinical parameters as a scoring system). Limitations to the studies included low number of patients; single centre based studies, unique clinical settings and varied use/comparison of multiple scoring systems across the 8 studies.

3. **What benefit will the proposed intervention/action have?**

Evidence statement
For the important outcome of score reliability, there is low quality evidence in two studies which demonstrates the reliability of two scoring systems for the assessment of severity in bronchiolitis.

Judging the benefits in context

- **Evidence statement**
 - For the important outcome of useful predictor, there is low quality evidence from two studies which demonstrates a correlation between score and severity of illness.

4. **What harm might the proposed intervention/action do?**

Evidence statement
For the important outcome of score reliability there is low quality evidence of ability to differentiate patients requiring admission or escalation of care. Application of these scores may lead to incorrect decision making.

Judging the harms in context

- **Evidence statement**
 - Due to minimal evidence, there are no indicators that a specific scoring system is more beneficial than clinical assessment and recording of oxygen saturation and observations when assessing, admitting or discharging a child from hospital with the diagnosis of bronchiolitis.

5. **What is the likely balance between good and harm?**

Evidence statement
The benefits are not likely to outweigh the harm.

Judging the balance of benefits and harms in context

- **Evidence statement**
 - Until further studies are conducted, the use of a scoring system does not change medical management or clinically relevant endpoints.

Summary statement
Current Bronchiolitis scoring systems do not change medical management or change clinically relevant end points.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
<tr>
<td>No</td>
<td>Recommend/consider against</td>
</tr>
</tbody>
</table>

6. **Is the intervention/action implementable in the New Zealand and Australian context?**

Summary statement
Current Bronchiolitis scoring systems do not change medical management or change clinically relevant end points.

<table>
<thead>
<tr>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
</tr>
</tbody>
</table>

7. **Final recommendation**

For infants presenting to hospital or hospitalised with bronchiolitis, there is insufficient evidence to recommend the use of a scoring system to predict need for admission or hospital length of stay.

Recommendations for research
Further research is needed to derive and validate a bronchiolitis scoring system for infants diagnosed with bronchiolitis that is generalisable for different populations, and that has significance for patient centred outcomes.
Question 6: NHMRC Evidence Summary

Question 6: For infants presenting to hospital or hospitalised with bronchiolitis, does use of a bronchiolitis scoring system beneficially change medical management or clinically relevant end-points?

Evidence table ref:

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

A	One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias
B	One or two Level II studies with a low risk of bias, or SR/ several Level III studies with a low risk of bias
C	One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias
D	Level IV studies or Level I to III studies/SRs with a high risk of bias

Eight prospective observational cohort studies enrolling a total of 594 children enrolled and two cross sectional observational studies which enrolled 282 children.

All studies are rated low or unclear for risk of bias.

2. Consistency (if only one study was available, rank this component as “not applicable”)

Evidence is inconsistent: There were eight different scoring systems used in the literature:

1. Chin et al (58) - Kristjansson Respiratory Score to Wang Respiratory Score
2. Destino et al (59) - Resp Distress Assessment Instrument and Children’s Hospital of Wisconsin Respiratory Score in Bronchiolitis
3. Duarte-Dorado et al (60) - Modified Woods Clinical Asthma Score (M WCAS) and the Tal et al Severity Score
4. Liu et al (61) - Clinical Parameters used for score were respiratory rate, retractions, dyspnoea and auscultation
5. Modified Resp Distress Assessment Instrument (RDAI)
6. McCallum et al (62) - Comparison of Tal and Modified Tal Scoring Systems
7. Walsh et al (64) - assessment tool used – work of breathing, dehydration and tachycardia
8. Shete et al (63) - Modified Tal’s score and oxygen saturation

A	All studies consistent
B	Most studies consistent and inconsistency can be explained
C	Some inconsistency, reflecting genuine uncertainty around question
D	Evidence is not consistent
NA	Not applicable (one study only per topic/tool)

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

Outcomes of studies concluded that RDAI score may serve as a guide to clinician in recognizing categories of patients who may require general or intensive care.

The Tal and mTal scoring systems were found to be reliable for research and clinical practice in one study.

Further evaluation is needed to ensure validity and consistency of the other scoring systems used in these studies.

Regarding predicting admission (59) the CHWRS had a sensitivity of 0.65 and specificity of 0.65, while the RDAI is not predictive of disposition. There is a correlation between oxygen saturations and Tals score.

A	Very large
B	Substantial
C	Moderate
D	Slight/Restricted

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

The studies were conducted in a number of countries using populations that are directly generalisable to patients with bronchiolitis seen in Australia and New Zealand. One study was conducted in the Northern Territory of Australia and therefore relative and reflective of the indigenous population present in Australia and New Zealand.

A	Evidence directly generalisable to target population
B	Evidence directly generalisable to target population with some caveats
C	Evidence not directly generalisable to target population but could be sensibly applied
D	Evidence not directly generalisable to target population and hard to judge whether sensible to apply

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

The results are probably applicable to the Australian/New Zealand healthcare context.

A	Evidence directly applicable to Australian/New Zealand healthcare context
B	Evidence applicable to Australian/New Zealand healthcare context with few caveats
C	Evidence probably applicable to Australian/New Zealand healthcare context with some caveats
D	Evidence not applicable to Australian/New Zealand healthcare context

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))
EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
</tbody>
</table>

Evidence statement: There is no clear and relevant evidence of benefits to infants with bronchiolitis for the use of a bronchiolitis scoring system. The evidence is generalizable to Australia and New Zealand.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

For infants presenting to hospital or hospitalised with bronchiolitis, there is insufficient evidence to recommend the use of a scoring system to predict need for admission or hospital length of stay.

OVERALL GRADE OF RECOMMENDATION

- A: Body of evidence can be trusted to guide practice
- B: Body of evidence can be trusted to guide practice in most situations
- C: Body of evidence provides some support for recommendations(s) but care should be taken in its application
- D: Body of evidence is weak and recommendation must be applied with caution
- PP: Practice Point

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

Studies compared a range of different scoring systems, and the optimal scoring system is still to be determined.

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

- Will this recommendation result in changes in usual care? **YES**
- Are there any resource implications associated with implementing this recommendation? **YES**
- Will the implementation of this recommendation require changes in the way care is currently organised? **YES**
- Are the guideline development group aware of any barriers to implementation of this recommendation? **NO**
Question 7. GRADE Evidence Summary

Question 7: For infants presenting to hospital or hospitalised with bronchiolitis, what criteria should be used for safe discharge?

<table>
<thead>
<tr>
<th>Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>Length of Stay</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Readmission</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. **Is there is insufficient evidence to make a recommendation?**

Evidence statement
The evidence is based on two prospective cohort studies (67, 68) conducted in over 30 United States EDs and hospitals and 3 Guidelines (10, 65, 66).

3. **What benefit will the proposed intervention/action have?**

Evidence statement
For the critical outcome of length of stay there is low quality evidence of identified criteria that should be used for safe discharge which would lead to a reduced length of stay.

Judging the benefits in context
The evidence is applicable and generalisable to the New Zealand and Australian health settings.

4. **What harm might the proposed intervention/action do?**

Evidence statement
For the important outcome of readmission rate there is low quality evidence that supports the use of specific discharge criteria which would lead to a reduced length of stay.

Judging the harms in context
The evidence is based on two prospective cohort studies (67, 68) conducted in over 30 United States EDs and hospitals and 3 Guidelines (10, 65, 66).

5. **What is the likely balance between good and harm?**

Evidence statement
The benefits are not likely to outweigh the harm.

Judging the balance of benefits and harms in context
Benefits clearly outweigh harms. |

Benefits clearly don’t outweigh harms | Recommend | STRONG |

Benefits probably outweigh harms | Consider | CONDITIONAL |

Benefits probably don’t outweigh harms | Recommend against | WEAK |

Harms clearly outweigh harms | Consider against | CONDITIONAL |

6. **Is the intervention/action implementable in the New Zealand and Australian context?**

Summary statement
Yes | Recommend/consider |

Not known | Consider economic evaluation |

No | Recommend/consider against |

7. **Final recommendation**

Oxygen saturations, adequacy of feeding, age (infants younger than 8 weeks), and social support should be considered at the time of discharge as a risk for representation. There is insufficient evidence to recommend absolute discharge criteria for infants attending the ED, or hospitalised with bronchiolitis.

<table>
<thead>
<tr>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
</tr>
</tbody>
</table>

Recommendations for research
Research on outcomes of infants with differing levels of oxygen saturations and duration of adequate feeding at the time of discharge.
Question 7. NHMRC Evidence Summary

For infants presenting to hospital or hospitalised with bronchiolitis, what criteria should be used for safe discharge?

<table>
<thead>
<tr>
<th>Evidence base (number of studies, level of evidence and risk of bias in the included studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two prospective multiyear cohort studies conducted at over 30 US hospitals enrolling over 3000 patients under the age of two years who were seen in ED or admitted to hospital with a diagnosis of Bronchiolitis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All studies are rated low or unclear for risk of bias.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consistency (if only one study was available, rank this component as ‘not applicable’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence is inconsistent.</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes of studies concluded there is insufficient data to demonstrate clearly what criteria should be used for safe discharge.</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The studies were conducted in the USA using populations that are directly generalisable to patients with bronchiolitis who are seen in Australia and New Zealand.</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The results are probably applicable to the Australian/New Zealand healthcare context.</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))</th>
</tr>
</thead>
</table>

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias.</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>N/A</td>
<td>Not applicable (one study only per topic/tool).</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>A</td>
<td>Evidence directly generalisable to target population.</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats.</td>
</tr>
</tbody>
</table>

Evidence statement:

There is no clear and relevant evidence of benefits to infants with bronchiolitis.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this)

<table>
<thead>
<tr>
<th>OVERALL GRADE OF RECOMMENDATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice.</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations.</td>
</tr>
</tbody>
</table>

Australasian Bronchiolitis Guideline 31 August 2016

47
Oxygen saturations, adequacy of feeding, age (infants younger than 8 weeks), and social support should be considered at the time of discharge as a risk for representation. There is insufficient evidence to recommend absolute discharge criteria for infants attending the ED, or hospitalised with bronchiolitis.

Evidence Use action statements when possible	C	Body of evidence provides some support for recommendations(s) but care should be taken in its application
D	Body of evidence is weak and recommendation must be applied with caution	
PP	Practice Point	

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

- Will this recommendation result in changes in usual care? **YES**
- Are there any resource implications associated with implementing this recommendation? **YES**
- Will the implementation of this recommendation require changes in the way care is currently organised? **YES**
- Are the guideline development group aware of any barriers to implementation of this recommendation? **YES**

Knowledge base

NO
Question 8a. i) GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 8a. i): In infants presenting to hospital or hospitalised with bronchiolitis, does administration of beta 2 agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1 Rate of hospitalisation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O2 Length of stay</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O3 Rate of readmission</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>O4 Adverse outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Is there sufficient evidence to make a recommendation?

Evidence statement

The evidence is based predominantly on one systematic review containing 30 RCTs involving 1992 infants with bronchiolitis. This review contained 11 inpatient, 10 outpatient, and 9 mixed inpatient/outpatient studies (69). Subsequently there has been one additional RCT of 56 infants (70) which does not change the findings of the review.

3. What benefit will the proposed intervention/action have?

Evidence statement

For the critical outcomes of rate of hospitalisation and length of stay there is high quality evidence that beta 2 agonists do not affect rate of hospitalisation or length of stay.

Quality of evidence

HIGH

Judging the benefits in context

There is a high quality of evidence that routine use of beta 2 agonists in the treatment of infants with bronchiolitis is not associated with any clinically relevant benefit.

4. What harm might the proposed intervention/action do?

Evidence statement

For the important outcome of rate of readmission no evidence was available.

Quality of evidence

LOW

Judging the harms in context

While the majority of the adverse events associated with beta 2 agonist use are self-limiting, given the lack of evidence to support the use of beta 2 agonists for the treatment of infants with bronchiolitis, beta 2 agonists should not be routinely used in the treatment of infants with bronchiolitis.

5. What is the likely balance between good and harm?

Evidence statement

The lack of benefits clearly doesn’t outweigh the harms.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms

Recommend

STRONG

Benefits probably outweigh harms

Consider

CONDITIONAL

Not known

Make a recommendation for research (see 8 below)

WEAK

Benefits probably don’t outweigh harms

Consider against

CONDITIONAL

Harms probably outweigh benefits

Benefits clearly don’t outweigh harms

Recommend against

STRONG

Harms clearly outweigh benefits

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement

Studies were conducted internationally (USA, Canada, UK, Australia, Turkey, France, Saudi Arabia, Egypt, Chile and Tunisia) in populations that are generalizable to patients with bronchiolitis seen in Australia and New Zealand. Beta 2 agonists are widely used and available in Australia and New Zealand.

Yes

Recommend/consider

Not known

Consider economic evaluation

No

Recommend/consider against

7. Final recommendation

Do not administer beta 2 agonists to infants presenting to hospital or hospitalised with bronchiolitis.

Strength of recommendation

STRONG

CONDITIONAL
Question 8a. i): In infants presenting to hospital or hospitalised with bronchiolitis, does administration of beta 2 Agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?

Evidence Summary

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Evidence Base</th>
<th>Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>One systematic review containing 30 RCTs (11 inpatient, 10 outpatient, and nine mixed inpatient/outpatient settings) involving 1992 infants (Level I).</td>
<td>All studies consistent</td>
<td>A</td>
</tr>
<tr>
<td>Subsequently there has been one additional RCT of 56 infants which did not alter the previous findings.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Clinical Impact</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Generalisability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand health care context in terms of health service / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors

Indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

Evidence Statement Matrix

(A summary of the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

Australasian Bronchiolitis Guideline 31 August 2016 50
### Component	Rating	Description
1. Evidence base | A | One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias
2. Consistency | B | Most studies consistent and inconsistency can be explained
3. Clinical Impact | B | Substantial
4. Generalisability | B | Evidence directly generalisable to target population with some caveats
5. Applicability | A | Evidence applicable to Australian/New Zealand healthcare context

Evidence statement
There is clear evidence of no clinically relevant benefits to infants with bronchiolitis administered beta 2 agonists.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)
Do not administer beta 2 agonists to infants presenting to hospital or hospitalised with bronchiolitis.

OVERALL GRADE OF RECOMMENDATION
- **A** Body of evidence can be trusted to guide practice
- **B** Body of evidence can be trusted to guide practice in most situations
- **C** Body of evidence provides some support for recommendation(s) but care should be taken in its application
- **D** Body of evidence is weak and recommendation must be applied with caution

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

- **Will this recommendation result in changes in usual care?**
 - Yes
 - No
 - There is no evidence that the use of bronchodilators is effective in treating first time wheezing infants with bronchiolitis. Often trials of beta agonists therapy are done in this population and potential treatment risks outweighs the body of evidence that suggests that beta agonist use in bronchiolitis is not useful.

- **Are there any resource implications associated with implementing this recommendation?**
 - Yes
 - No

- **Will the implementation of this recommendation require changes in the way care is currently organised?**
 - Yes
 - No

- **Are the guideline development group aware of any barriers to implementation of this recommendation?**
 - Yes
 - No
Question 8a. ii) GRADE Evidence Summary

Considered Judgement - Strength of recommendation

<table>
<thead>
<tr>
<th>Question 8a. ii): In older infants presenting to hospital or hospitalised with bronchiolitis, does administration of Beta 2 agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Outcome measures:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>O1: Rate of hospitalisation</td>
</tr>
<tr>
<td>O2: Length of stay</td>
</tr>
<tr>
<td>O3: Rate of readmission</td>
</tr>
<tr>
<td>O4: Adverse outcomes</td>
</tr>
</tbody>
</table>

2. Is there sufficient evidence to make a recommendation?

Evidence statement:
The evidence is based predominantly on one systematic review containing 30 RCTs involving 1992 infants with bronchiolitis. This review contained 11 inpatient and 10 outpatient studies (69). Subsequently there has been one additional RCT of 56 infants (70) which does not change the findings of the review.

The sensitivity analysis of the Cochrane systematic meta-analysis showed no significant subgroup effect in studies involving inpatients vs. outpatients (infants in the outpatient studies tended to be older). Limiting the analysis to infants aged less than or equal to 12 months did not improve heterogeneity. Furthermore, infants less than or equal to 12 months of age are included in the Cochrane systematic meta-analysis for the critical outcomes of rate of hospitalisation and length of stay.

A smaller under-powered Cochrane systematic meta-analysis (Chavasse et al (71), 8 studies, n=281) of short acting beta 2 agonists for recurrent wheeze in children under two years of age has also found that there is no current clinical benefit.

3. What benefit will the proposed intervention/action have?

Evidence statement:
For the critical outcomes of rate of hospitalisation and length of stay there is high quality evidence that beta 2 agonists do not affect rate of hospitalisation or length of stay.

Judging the benefits in context
There is a high quality of evidence that routine use of beta 2 agonists in the treatment of infants with bronchiolitis is not associated with any clinically relevant benefit.

4. What harm might the proposed intervention/action do?

Evidence statement:
For the important outcome of rate of readmission no evidence was available.

Judging the harms in context
While the majority of the adverse events associated with beta 2 agonist use are self-limiting, given the lack of evidence to support the use of beta 2 agonists for the treatment of infants with bronchiolitis, beta 2 agonists should not be routinely used in the treatment of infants with bronchiolitis.

5. What is the likely balance between good and harm?

Evidence statement:
The lack of benefits clearly doesn’t outweigh the harms.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms: Recommend
Benefits probably outweigh harms: Consider
Not known: Make a recommendation for research (see 8 below)
Benefits probably don’t outweigh harms: Consider against
Harms probably outweigh benefits: CONDITIONAL
Benefits clearly don’t outweigh harms: Recommend against
Harms clearly outweigh benefits: STRONG

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement:
Studies were conducted internationally (USA, Canada, UK, Australia, Turkey, France, Saudi Arabia, Egypt, Chile and Tunisia) in populations that are generalizable to patients with bronchiolitis seen in Australia and New Zealand. Beta 2 agonists are widely used and available in Australia and New Zealand. Infants less than or equal to 12 months of age are included in the Cochrane systematic meta-analysis for the critical outcomes of rate of hospitalisation and length of stay.
7. Final recommendation

Do not administer beta 2 agonists to infants, less than or equal to 12 months of age, presenting to hospital or hospitalised with bronchiolitis.

Strength of recommendation

STRONG
CONDITIONAL
WEAK

8. Recommendations for research

Previous studies should be reviewed to clarify the effects of beta 2 agonists in infants aged between 6 and 12 months of age.

Question 8a ii) NHMRC Evidence Summary

<table>
<thead>
<tr>
<th>Evidence base (number of studies, level of evidence and risk of bias in the included studies)</th>
<th>One systematic review containing 30 RCTs (11 inpatient, 10 outpatient, and nine mixed inpatient/outpatient settings) involving 1992 infants (Level I). Most studies are rated low or unclear for risk of bias; sensitivity analysis restricted to those studies of low risk of bias confirmed the results.</th>
<th>A</th>
<th>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subsequently there has been one additional RCT of 56 infants which did not alter the previous findings.</td>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td></td>
<td>A smaller under-powered Cochrane systematic meta-analysis (Chavasse et al (71), eight studies, n=281) of short acting beta 2 agonists for recurrent wheeze in children under two years of age has also found that there is no current clinical benefit.</td>
<td>C</td>
<td>One or two Level III studies with a low risk of bias, or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

Consistency (if only one study was available, rank this component as 'not applicable')	Evidence is consistent that beta 2 agonists are not associated with changes to hospitalisation rates or length of stay, with low levels of heterogeneity. There is considerable heterogeneity in meta-analysis of the outcomes of oxygenation and clinical severity scores. Both may represent measurement differences in that oxygenation levels are not reported at consistent times, and a number of clinical severity scores are used. The sensitivity analysis of the Cochrane systematic meta-analysis showed no significant subgroup effect in studies involving inpatients vs. outpatients (infants in the outpatient studies tended to be older). Limiting the analysis to infants aged less than or equal to 12 months did not improve heterogeneity. Furthermore, infants less than or equal to 12 months of age are included in the Cochrane systematic meta-analysis for the critical outcomes of rate of hospitalisation and length of stay.	A	All studies consistent
		B	Most studies consistent and inconsistency can be explained
		C	Some inconsistency, reflecting genuine uncertainty around question
		D	Evidence is not consistent
		NA	Not applicable (one study only)

Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)	Infants with bronchiolitis administered beta 2 agonists do not have any change in rate of hospitalisation (OR 0.75, 95% CI 0.46 to 1.21), length of stay (MD 0.06 days, 95% CI -0.27 days to 0.39 days), or oxygen saturation (MD -0.43%, 95% CI -0.92% to 0.06%). Administration of beta 2 agonists results in a statistical improvement in short term clinical severity scores (SMD -0.30, 95% CI -0.54 to -0.05). However, this marginal change is not associated with any clinically relevant improvement. Administration of beta 2 agonists results in the following adverse events: tachycardia, hypertension, decreased oxygen saturation, flushing, hyperactivity, prolonged cough, and tremor.	A	Very large
		B	Substantial
		C	Moderate
		D	Slight/Restricted

Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)	Studies were completed in a wide range of countries (USA, Canada, UK, Australia, Turkey, France, Saudi Arabia, Egypt, Chile and Tunisia) using populations that are directly generalisable to patients with bronchiolitis seen in Australia and New Zealand.	A	Evidence directly generalisable to target population
		B	Evidence directly generalisable to target population with some caveats
		C	Evidence not directly generalisable to target population but
No studies have been done specifically looking at Maori/Pacific Island or Aboriginal infants who do have a high disease burden with bronchiolitis.

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

The results are directly applicable to the Australian/New Zealand healthcare context. Beta 2 agonists are readily available in Australia and New Zealand.

Evidence Statement Matrix (summarises the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>A</td>
<td>Evidence applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Evidence statement: There is clear evidence of no clinically relevant benefits to infants with bronchiolitis administered beta 2 agonists.

Recommendation: Do not administer beta 2 agonists to infants, less than or equal to 12 months of age, presenting to hospital or hospitalised with bronchiolitis.

Overall Grade of Recommendation

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
<tr>
<td>PP</td>
<td>Practice Point</td>
</tr>
</tbody>
</table>

Implementation of Recommendation (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guideline)

Will this recommendation result in changes in usual care?
Yes

Are there any resource implications associated with implementing this recommendation?
Yes

Will the implementation of this recommendation require changes in the way care is currently organised?
Yes

Are the guideline development group aware of any barriers to implementation of this recommendation?
Yes
Question 8b. i) GRADE Evidence Summary

Question 8b i): In infants presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy, does administration of beta 2 agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Rate of hospitalisation</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O2: Length of stay</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O3: Rate of readmission</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O4: Adverse outcomes</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Is there sufficient evidence to make a recommendation?

Evidence statement
In the Gadomski et al (69) review none of the 30 RCTs specifically addresses the evidence for beta 2 agonist use in infants presenting to hospital or hospitalised with bronchiolitis with a personal or family history of atopy.

3. What benefit will the proposed intervention/action have?

Evidence statement
There is no specific evidence for this subgroup. In general, for infants with bronchiolitis for the critical outcomes of rate of hospitalisation and length of stay there is high quality evidence that beta 2 agonists do not affect rate of hospitalisation or length of stay.

Quality of evidence
VERY LOW

Judging the benefits in context
There is no randomised controlled evidence of benefit for this subgroup.

4. What harm might the proposed intervention/action do?

Evidence statement
For the important outcome of rate of readmission no evidence was available. Reporting of adverse effects in general studies of beta 2 agonists vs. placebo were exclusively found in the study groups receiving beta 2 agonists and included the following adverse events: tachycardia, hypertension, decreased oxygen saturation, flushing, hyperactivity, prolonged cough, and tremor. Furthermore, adverse effects of beta 2 agonists are generally well described in the literature.

Quality of evidence
LOW

Judging the harms in context
While the majority of the adverse events associated with beta 2 agonist use are self-limiting, given the lack of evidence to support the use of beta 2 agonists for the treatment of infants with bronchiolitis, beta 2 agonists should not be routinely used in the treatment of infants with bronchiolitis, with a personal or family history of atopy.

5. What is the likely balance between good and harm?

Evidence statement
There is no good evidence to support the trial of beta 2 agonists in infants with personal or family history of atopy.

Overall quality of evidence
VERY LOW

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms	Consider	CONDITIONAL
Not known	Make a recommendation for research (see 8 below)	WEAK
Benefits probably don’t outweigh harms	Consider against	CONDITIONAL
Harms probably outweigh benefits	Recommend against	STRONG

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
Beta 2 agonists are widely used and available in Australia and New Zealand.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
<tr>
<td>No</td>
<td>Recommend/consider against</td>
</tr>
</tbody>
</table>

7. Final recommendation

Do not administer beta 2 agonists to infants presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy.

Strength of recommendation
STRONG

Recommendation

Australasian Bronchiolitis Guideline 31 August 2016 55
Studies of the use of beta 2 agonists in infants presenting to hospital or hospitalised with bronchiolitis and a personal or family history of atopy are needed.

Question 8b i) NHMRC Evidence Summary

Question 8b i): In infants presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy, does administration of Beta 2 agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

 No studies have addressed this question.

 A One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias
 B One or two Level II studies with a low risk of bias, or SR/level III studies with a low risk of bias
 C One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias
 D Level IV studies or Level I to III studies/SRs with a high risk of bias

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

 A All studies consistent
 B Most studies consistent and inconsistency can be explained
 C Some inconsistency, reflecting genuine uncertainty around question
 D Evidence is not consistent
 NA Not applicable (one study only)

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

 A Very large
 B Substantial
 C Moderate
 D Slight/Restricted

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

 A Evidence directly generalisable to target population
 B Evidence directly generalisable to target population with some caveats
 C Evidence not directly generalisable to target population but could be sensibly applied
 D Evidence not directly generalisable to target population and hard to judge whether sensible to apply

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

 A Evidence directly applicable to Australian/New Zealand healthcare context
 B Evidence applicable to Australian/New Zealand healthcare context with few caveats
 C Evidence probably applicable to Australian/New Zealand healthcare context with some caveats
 D Evidence not applicable to Australian/New Zealand healthcare context

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))

There is no good quality evidence evaluating the effect of beta 2 agonists in infants with bronchiolitis and a personnel or family history of atopy.

Previously trials of beta 2 agonists have been suggested as a clinical option. However, given the high level of evidence (NHMRC A, GRADE strong) demonstrating no benefit of beta 2 agonists in infants presenting to or hospitalised with bronchiolitis, and that there is no well-established way to determine an “objective method of response” to beta 2 agonists in bronchiolitis, this option is no longer recommended. Although it is true that a small subset of children with bronchiolitis may have reversible airway obstruction resulting from smooth muscle constriction, attempts to define a subgroup of responders have not been successful to date. If a clinical trial of bronchodilators is undertaken, clinicians should note that the variability of the disease process, the host’s airway, and the clinical assessments, particularly scoring, would limit the clinician’s ability to observe a clinically relevant response to bronchodilators (13).
Administration of beta 2 agonists has resulted in the following adverse events: tachycardia, hypertension, decreased oxygen saturation, flushing, hyperactivity, prolonged cough, and tremor.

Beta 2 agonists should only be used in infants with a personal or family history of atopy as part of an RCT in order to establish a better evidence base.

EVIDENCE STATEMENT MATRIX

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether it is sensible to apply</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>D</td>
<td>Evidence not applicable to Australian healthcare context</td>
</tr>
</tbody>
</table>

Evidence statement

There is no good evidence to support the trial of beta 2 agonists in infants with personal or family history of atopy.

RECOMMENDATION

Do not administer beta 2 agonists to infants presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy.

OVERALL GRADE OF RECOMMENDATION

- **A**: Body of evidence can be trusted to guide practice
- **B**: Body of evidence can be trusted to guide practice in most situations
- **C**: Body of evidence provides some support for recommendations(s) but care should be taken in its application
- **D**: Body of evidence is weak and recommendation must be applied with caution
- **PP**: Practice Point

IMPLEMENTATION OF RECOMMENDATION

(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

<table>
<thead>
<tr>
<th>Will this recommendation result in changes in usual care?</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
Question 8b. ii) GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 8b ii): In older infants presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy, does administration of Beta 2 agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O2: Rate of hospitalisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2: Length of stay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2: Rate of readmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2: Adverse outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Is there sufficient evidence to make a recommendation?**

Evidence statement

In the Gadomski et al (69) review none of the 30 RCTs specifically addresses the evidence for beta 2 agonist use in infants presenting to hospital or hospitalised with bronchiolitis with a personal or family history of atopy.

3. **What benefit will the proposed intervention/action have?**

Evidence statement

There is no specific evidence for this subgroup. In general, for infants with bronchiolitis for the critical outcomes of rate of hospitalisation and length of stay there is high quality evidence that beta 2 agonists do not affect rate of hospitalisation or length of stay.

Judging the benefits in context

There is no randomised controlled evidence of benefit for this subgroup.

4. **What harm might the proposed intervention/action do?**

Evidence statement

For the important outcome of rate of readmission no evidence was available.

Quality of evidence

LOW

Judging the harms in context

While the majority of the adverse events associated with beta 2 agonist use are self-limiting, given the lack of evidence to support the use of beta 2 agonists for the treatment of infants with bronchiolitis, beta 2 agonists should not be routinely used in the treatment of infants with bronchiolitis, with a personal or family history of atopy.

5. **What is the likely balance between good and harm?**

Evidence statement

There is no good evidence to support the trial of beta 2 agonists in infants with personal or family history of atopy.

Overall quality of evidence

VERY LOW

Judging the balance of benefits and harms in context

- Benefits clearly outweigh harms
 Recommend
 STRONG

- Benefits probably outweigh harms
 Consider
 CONDITIONAL

- Not known
 Make a recommendation for research (see 8 below)
 WEAK

- Benefits probably don’t outweigh harms
 Consider against
 CONDITIONAL

- Harms probably outweigh benefits
 Recommenad against
 STRONG

- Benefits clearly don’t outweigh harms
 Recommend against

6. **Is the intervention/action implementable in the New Zealand and Australian context?**

Summary statement

Beta 2 agonists are widely used and available in Australia and New Zealand.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
<tr>
<td>No</td>
<td>Recommend/consider against</td>
</tr>
</tbody>
</table>

7. **Final recommendation**

Recommendations for research

- Do not administer beta 2 agonists to infants, less than or equal to 12 months of age, presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy.
 Strength of recommendation
 STRONG

Australasian Bronchiolitis Guideline 31 August 2016 58
Studies of the use of beta 2 agonists in infants presenting to hospital or hospitalised with bronchiolitis and a personal or family history of atopy are needed.

Question 8b ii) NHMRC Evidence Summary

Question 8b ii): In older infants presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy, does administration of Beta 2 agonists (nebulisation, aerosol, oral or IV) improve clinically relevant end-points?

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Evidence base</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Clinical impact</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Generalisability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

There is no good quality evidence evaluating the effect of beta 2 agonists in infants with bronchiolitis and a personnel or family history of atopy.

Previously trials of beta 2 agonists have been suggested as a clinical option. However, given the high level of evidence (NHMRC A, GRADE strong) demonstrating no benefit of beta 2 agonists in infants presenting to or hospitalised with bronchiolitis, and that there is no well-established way to determine an “objective method of response” to beta 2 agonists in bronchiolitis, this option is no longer recommended. Although it is true that a small subset of children with bronchiolitis may have reversible airway obstruction resulting from smooth muscle constriction, attempts to define a subgroup of responders have not been successful to date. If a clinical trial of bronchodilators is undertaken, clinicians should note that the variability of the disease process, the host’s airway, and the clinical assessments, particularly scoring, would limit the clinician’s ability to
observe a clinically relevant response to bronchodilators (13).

Administration of beta 2 agonists has resulted in the following adverse events: tachycardia, hypertension, decreased oxygen saturation, flushing, hyperactivity, prolonged cough, and tremor.

Beta 2 agonists should only be used in infants with a personal or family history of atopy as part of an RCT in order to establish a better evidence base.

EVIDENCE STATEMENT MATRIX (summarizes the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether it is sensible to apply</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>D</td>
<td>Evidence not applicable to Australian healthcare context</td>
</tr>
</tbody>
</table>

Evidence statement
Do not administer beta 2 agonists to infants presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy.

RECOMMENDATION (What recommendations does the guideline development group draw from this evidence? Use action statements where possible)

Do not administer beta 2 agonists to infants, less than or equal to 12 months of age, presenting to hospital or hospitalised with bronchiolitis, with a personal or family history of atopy.

OVERALL GRADE OF RECOMMENDATION

- A: Body of evidence can be trusted to guide practice
- B: Body of evidence can be trusted to guide practice in most situations
- C: Body of evidence provides some support for recommendations but care should be taken in its application
- D: Body of evidence is weak and recommendation must be applied with caution

PP Practice Point

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

- Will this recommendation result in changes in usual care? YES NO
- Are there any resource implications associated with implementing this recommendation? YES NO
- Will the implementation of this recommendation require changes in the way care is currently organised? YES NO
- Are the guideline development group aware of any barriers to implementation of this recommendation? YES NO
Question 9. GRADE Evidence Summary

Question 9: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of adrenaline/epinephrine (nebulisation, IM or IV) improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>9. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Rate of hospitalisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2: Length of stay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3: Rate of readmission</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>O4: Adverse outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Is there sufficient evidence to make a recommendation?

Evidence statement:
The evidence is based predominantly on one Cochrane systematic review containing 19 RCTs involving 2,256 infants with bronchiolitis (72). Subsequently there have been five additional RCTs of 914 infants which support the findings of the review.

11. What benefit will the proposed intervention/action have?

Evidence statement:
For the critical outcome of rate of hospitalisation there is low quality evidence that Infants with bronchiolitis administered adrenaline/epinephrine in ambulatory settings have a significant reduction in rate of hospitalisation within the first 24 hours after initiation of treatment (RR 0.67, 95% CI 0.50 to 0.89, n=995). However this is not the case when only trials at low risk of bias are analysed (RR 0.77, 95% CI 0.56 to 1.07, n=842), in the most recent study (Sarrell et al (76), n=330), or when hospitalization is analysed over the first seven days after initiating treatment (RR 0.81, 95% CI 0.63 to 1.03, n=875).

Quality of evidence
LOW/HIGH

Judging the benefits in context
There is a moderate quality of evidence that routine use of adrenaline/epinephrine in the treatment of infants with bronchiolitis is not associated with any consistent clinically relevant benefit.

12. What harm might the proposed intervention/action do?

Evidence statement:
For the important outcome of rate of readmission there is moderate quality evidence that adrenaline/epinephrine administration does not affect readmission rate.

Quality of evidence
LOW/MODERATE

Judging the harms in context
While the majority of the adverse events associated with adrenaline/epinephrine use are self-limiting, given the lack of evidence to support the use of adrenaline/epinephrine for the treatment of infants with bronchiolitis, adrenaline/epinephrine should not be routinely used in the treatment of infants with bronchiolitis.

13. What is the likely balance between good and harm?

Evidence statement:
The lack of benefits clearly doesn’t outweigh the harms.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms	Consider	CONDITIONAL
Not known	Make a recommendation for research (see 8 below)	WEAK
Benefits probably don’t outweigh harms	Consider against	CONDITIONAL
Harms probably outweigh benefits		
Benefits clearly don’t outweigh harms	Recommend against	STRONG
Harms clearly outweigh benefits		

14. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement:
Studies were conducted internationally (USA, Canada, UK, Australia, Norway, Turkey, Iran, Israel, Jordan, Chile, India, Bangladesh) in populations that are generalizable to patients with bronchiolitis seen in Australia and New Zealand. Adrenaline/epinephrine is widely used and available in Australia and New Zealand.

| Yes | Recommend/consider |
| Not known | Consider economic evaluation |
Question 9: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of adrenaline/epinephrine (nebulisation, IM or IV) improve clinically relevant end-points?

Evidence Table Ref:

Evidence Base
One systematic review (Hartling et al (72), 19 studies, n=2,256) (level I).
Subsequent to this there has been three further RCTs comparing adrenaline/epinephrine to a nasal decongestant or beta-2-agonists (Livni et al (73), n=65, Modaressi et al (74), n=40, Simsek-Kiper et al (75), n=75) or to placebo in ambulatory (Sarrell et al (76), n=330) and inpatient settings (Skjerven et al (77), n=404) that have not changed the findings of the meta-analysis.

Infants with bronchiolitis administered adrenaline/epinephrine in ambulatory settings have a significant reduction in rate of hospitalisation within the first 24 hours after initiation of treatment (RR 0.67, 95% CI 0.50 to 0.89, n=995). However this is not the case when only trials at low risk of bias are analysed (RR 0.77, 95% CI 0.56 to 1.07, n=842), in the most recent study (Sarrell et al (76), n=330), or when hospitalization is analysed over the first seven days after initiating treatment (RR 0.81, 95% CI 0.63 to 1.03, n=875).

Consistency
There is inconsistency in evidence regarding rate of hospitalisation.

Clinical Impact
Evidence regarding hospitalisation discussed above. Evidence from the Cochrane meta-analysis and the recent high quality RCT (Skjerven et al (77), n=404) do not suggest that administering adrenaline/epinephrine in inpatients with bronchiolitis changes hospital length of stay or readmission rates.

Administration of adrenaline/epinephrine in RCTs resulted in the following adverse events: tachycardia, hypertension, pallor, vomiting and tremor.

Generalisability
Studies were conducted internationally (USA, Canada, UK, Australia, Norway, Turkey, Iran, Israel, Jordan, Chile, India, Bangladesh) in populations that are generalizable to patients with bronchiolitis seen in Australia and New Zealand. Adrenaline/epinephrine is widely used and available in Australia and New Zealand.

No studies have been done specifically looking at Maori/Pacific Island or Aboriginal infants who do have a high disease burden with bronchiolitis.
5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

The results are directly applicable to the Australian/New Zealand healthcare context. Adrenaline/epinephrine is readily available in Australia and New Zealand.

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Evidence statement

There is clear evidence of no clinically relevant benefits to infants with bronchiolitis administered beta 2 agonists.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

Do not administer adrenaline/epinephrine to infants presenting to hospital or hospitalised with bronchiolitis,

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
<tr>
<td>PP</td>
<td>Practice Point</td>
</tr>
</tbody>
</table>

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

<table>
<thead>
<tr>
<th>Question</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td>Currently little adrenaline/epinephrine are used in clinical practice in Australia and New Zealand, this is in contrast to North American practice.</td>
<td>YES</td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td></td>
<td>YES</td>
</tr>
</tbody>
</table>
Question 10. GRADE Evidence Summary

Question 10: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of nebulised hypertonic saline improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Length of stay</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O2: Admission rate</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O3: Readmission rate</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O4: Adverse events</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Is there is insufficient evidence to make a recommendation?

Evidence statement
The evidence is based on one Cochrane systematic review of 11 RCTs (78) and a further nine additional RCTs (79-87). Subsequent to the Cochrane review there have been three further systematic reviews (88-90) and the newer trials have been included in an updated systematic review by the Cochrane authors (91) and a live meta-analysis (92).

3. What benefit will the proposed intervention/action have?

Evidence statement
For the critical outcome of length of stay there is very low quality evidence of a reduced length of stay in infants treated with nebulised hypertonic saline (mean difference -0.44 days, 95% CI -0.74 to -0.14 days; 15 studies, n=1,922). However there is considerable heterogeneity in the overall result (I2=78%). Removal of two studies with overall length of stay considerably longer than current clinical practice in Australia and New Zealand, and with a primary outcome definition considerably different than that used in Australia and New Zealand for discharge (no respiratory signs or symptoms for 12 hours), partially explains the heterogeneity and results in a pooled estimate suggesting no effect. Furthermore, analysis restricted to the four largest trials, all at lower risk of bias, again suggests no benefit (89). A number of studies included in the meta-analysis also appear to be unbalanced with regards to duration of illness prior to treatment in the hypertonic saline arms.

For the critical outcome of admission rate there is very low quality evidence of a reduced admission rate in infants treated with nebulised hypertonic saline (RR 0.80, 95% CI 0.67 to 0.96; 7 RCTs, n=951). The seven RCTs reporting this outcome included a range of regimens, strengths and added medications. Furthermore, subgroup analysis suggests that nebulised hypertonic saline is not effective in the studies using just one to two doses compared with those using three or more (one to two doses RR 0.93, 95% CI 0.73 to 1.20, 4 RCTs, n=358; three or more doses RR 0.67, 95% CI 0.52 to 0.87, 3 RCTs, n=593; p value for subgroup comparison = 0.07).

Judging the benefits in context
There are two positive studies with overall length of stay considerably longer than current clinical practice in Australia and New Zealand, and with a primary outcome definition considerably different than that used in Australia and New Zealand for discharge (no respiratory signs or symptoms for 12 hours), removal of these studies partially explains the heterogeneity in the length of stay analysis and results in a pooled estimate suggesting no effect. The remaining studies appear applicable and generalisable to the Australian and New Zealand health settings.

4. What harm might the proposed intervention/action do?

Evidence statement
For the important outcome of readmission rate there is low quality evidence of no increase in readmission rate in those treated with nebulised hypertonic saline.

For the important outcome of adverse events there is low quality evidence of no increase in adverse events in those treated with nebulised hypertonic saline.

Judging the harms in context
Evidence to date indicates no increased risk of harm in infants treated. However the majority of studies have only been in mild or moderately unwell infants, and so the risk in severely unwell infants is unknown.

5. What is the likely balance between good and harm?

Evidence statement
Evidence from the largest individual studies, and from the meta-analysis, do not consistently provide evidence of improved length of stay following the use of nebulised hypertonic saline. While there is weak evidence of reduced admission rates following the use of hypertonic saline, there is heterogeneity in the treatment regimens used, and a suggestion that one to two dose regimens are ineffective. Given the lack of long term effect of nebulised hypertonic saline on length of stay the routine use of nebulized hypertonic saline in the ED to reduce admissions is not supported by the current evidence base outside of a RCT.

Judging the balance of benefits and harms in context
Benefits clearly outweigh harms.

<table>
<thead>
<tr>
<th>Benefits clearly outweigh harms</th>
<th>Recommend</th>
<th>STRONG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits probably outweigh harms</td>
<td>Consider</td>
<td>CONDITIONAL</td>
</tr>
<tr>
<td>Not known</td>
<td>Make a recommendation for research (see below)</td>
<td>WEAK</td>
</tr>
<tr>
<td>Benefits probably don’t outweigh harms</td>
<td>Consider against</td>
<td>CONDITIONAL</td>
</tr>
</tbody>
</table>

Australasian Bronchiolitis Guideline 31 August 2016 64
6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
Hypertonic saline is readily available in Australia and New Zealand, although use is currently confined to patients with bronchiectasis and cystic fibrosis.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
<tr>
<td>No</td>
<td>Recommend/consider against</td>
</tr>
</tbody>
</table>

7. Final recommendation

Do not administer nebulised hypertonic saline in infants presenting to hospital or hospitalised with bronchiolitis.

8. Recommendations for research

Further research is required to determine the optimum strength and frequency of this treatment. Further large multicenter trials are required to confirm the overall benefits of nebulized hypertonic saline in ED settings with regards to effects on admission into hospital. To date, research studies conducted in regard to the use of nebulised hypertonic saline have included a range of regimens, strengths and added medications. Further research is required to determine the optimum strength and frequency of this treatment.

Question 10: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of nebulised hypertonic saline improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>B One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>C One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D Level IV studies or Level I to III studies/ SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Consistency (if only one study was available, rank this component as 'not applicable')</th>
</tr>
</thead>
<tbody>
<tr>
<td>A All studies consistent</td>
</tr>
<tr>
<td>B Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D Evidence is not consistent</td>
</tr>
</tbody>
</table>

| NA Not applicable (one study only) |

<table>
<thead>
<tr>
<th>3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Very large</td>
</tr>
<tr>
<td>B Substantial</td>
</tr>
</tbody>
</table>

Australasian Bronchiolitis Guideline 31 August 2016

65
Hypertonic saline is readily available in Australia and New Zealand, although use is currently confined to patients with bronchiectasis and cystic fibrosis. There appears to be no increase in adverse events or change in readmission rates following discharge from EDs.

Effect of nebulised hypertonic saline

Studies were conducted internationally (USA, Canada, UK, Netherlands, Turkey, Tunis, Israel, Qatar, Doha, India, Argentina, Nepal, Italy, China) in populations that are generalizable to patients with bronchiolitis seen in Australia and New Zealand. No studies have been done specifically looking at Maori/Pacific Island or Aboriginal infants who do have a high disease burden with bronchiolitis.

There are two positive studies with overall length of stay considerably longer than current clinical practice in Australia and New Zealand, and with a primary outcome definition considerably different than that used in Australia and New Zealand for discharge (no respiratory signs or symptoms for 12 hours), removal of these studies partially explains the heterogeneity in the length of stay analysis and results in a pooled estimate suggesting no effect. The remaining studies appear applicable Australian/New Zealand healthcare context. Hypertonic saline is readily available in Australia and New Zealand, although use is currently confined to patients with bronchiectasis and cystic fibrosis.

There is evidence that nebulised hypertonic saline on admission rates when given in the ED remains uncertain. Studies used different regimens of nebulised hypertonic saline, and the optimal regime is still to be determined.

Recommendation

Do not administer nebulised hypertonic saline in infants presenting to hospital or hospitalised with bronchiolitis.

Evidence statement

Studies were conducted internationally (USA, Canada, UK, Netherlands, Turkey, Tunis, Israel, Qatar, Doha, India, Argentina, Nepal, Italy, China) in populations that are generalizable to patients with bronchiolitis seen in Australia and New Zealand. Hypertonic saline is readily available in Australia and New Zealand, although use is currently confined to patients with bronchiectasis and cystic fibrosis.

Evidence matrix

- **Evidence Base:** Level IV studies or Level I to III studies/SRs with a high risk of bias
- **Consistency:** Evidence is not consistent
- **Clinical Impact:** Slight/Restricted
- **Generalisability:** Evidence directly generalisable to target population with some caveats
- **Applicability:** Evidence directly generalisable to target population with some caveats

Other factors: (indicate here any other factors that you took into account when assessing the evidence base [for example, issues that might cause the group to downgrade or upgrade the recommendation])

Overall grade of recommendation

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
<td></td>
</tr>
</tbody>
</table>

Implementaiton of recommendation

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
Question 11a. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 11a: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of systemic or local glucocorticoids (nebulisation, oral, IM or IV) improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Rate of hospitalisation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O2: Length of stay</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O3: Rate of readmission</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O4: Adverse outcomes</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2. Is there sufficient evidence to make a recommendation?

Evidence statement:
The evidence is based predominantly on one Cochrane systematic review containing 17 RCTs involving 2,596 infants with bronchiolitis (93). Subsequently there has been two further RCTs (Alansari et al (94), n=200; Jartti et al (95), n=79).

3. What benefit will the proposed intervention/action have?

Evidence statement:
For the critical outcome of rate of hospitalisation there is high quality evidence that glucocorticoids do not effect rate of hospitalisation at either one day (RR 0.92, 95% CI 0.78 to 1.08, n=1,762) or seven days (RR 0.86, 95% CI 0.70 to 1.06, n=1,530).

4. What harm might the proposed intervention/action do?

Evidence statement:
For the important outcome of rate of readmission there is moderate quality evidence that glucocorticoid administration does not affect readmission rate.

Judging the benefits in context
There is a high quality of evidence that routine use of glucocorticoids in the treatment of infants with bronchiolitis is not associated with any consistent clinically relevant benefit.

5. What is the likely balance between good and harm?

Evidence statement:
The lack of benefits clearly doesn’t outweigh the harms.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms	Consider	CONDITIONAL
Not known	Make a recommendation for research (see 8 below)	WEAK
Benefits probably don't outweigh harms	Consider against	CONDITIONAL
Harms probably outweigh benefits		
Benefits clearly don't outweigh harms	Recommend against	STRONG
Harms clearly outweigh benefits		

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement:
Studies were conducted internationally (USA, Canada, UK, Belgium, Brazil, Turkey, Israel, Thailand, Mexico, Paraguay) in populations that are generalizable to patients with bronchiolitis seen in Australia and New Zealand. Glucocorticoids are widely used and available in Australia and New Zealand.
Final Recommendation

Do not administer local or systemic glucocorticoids to infants presenting to hospital or hospitalised with bronchiolitis.

Strength of recommendation
- **STRONG**
- **CONDITIONAL**
- **WEAK**

Recommendations for research

Studies of long-term effects are required.

Question 11a. NHMRC Evidence Summary

Question 11a: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of systemic or local glucocorticoids (nebulisation, oral, IM or IV) improve clinically relevant end-points?

Evidence table ref:

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Level</th>
<th>Evidence Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/ several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

2. Consistency (if only one study was available, rank this component as 'not applicable')

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Impact</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Generalisability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>
Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>A</td>
<td>Evidence applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Evidence statement
There is clear evidence of no clinically relevant benefits to infants with bronchiolitis administered glucocorticoids.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

Do not administer local or systemic glucocorticoids to infants presenting to hospital or hospitalised with bronchiolitis.

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
<tr>
<td>PP</td>
<td>Practice Point</td>
</tr>
</tbody>
</table>

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td>YES</td>
</tr>
<tr>
<td>There is some use of glucocorticoids in clinical practice in Australia and New Zealand.</td>
<td>NO</td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>YES</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>NO</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>YES</td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>NO</td>
</tr>
</tbody>
</table>
Question 11b. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 11b: In infants presenting to hospital or hospitalised with bronchiolitis, with a positive response to beta 2 agonists, does administration of systemic or local glucocorticoids (nebulisation, oral, IM or IV) improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Rate of hospitalisation</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O2: Length of stay</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O3: Rate of re-admission</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O4: Adverse outcomes</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. **Is there sufficient evidence to make a recommendation?**

Evidence statement

In the Fernandes et al (93) review none of the 17 RCTs specifically addresses the evidence for glucocorticoid use in infants presenting to hospital or hospitalised with a positive response to beta 2 agonists, or those with a personal or family history of atopy.

3. **What benefit will the proposed intervention/action have?**

Evidence statement

There is no specific evidence for this subgroup. In general, for infants with bronchiolitis for the critical outcomes of rate of hospitalisation and length of stay there is high quality evidence that glucocorticoids do not effect rate of hospitalisation or length of stay.

Quality of evidence

Quality of evidence

VERY LOW

Judging the benefits in context

There is no randomised controlled evidence of benefit for this subgroup.

4. **What harm might the proposed intervention/action do?**

Evidence statement

For the important outcome of rate of readmission no evidence is available.

Quality of evidence

LOW

Judging the harms in context

Given the lack of evidence to support the use of glucocorticoids for the treatment of infants with bronchiolitis, glucocorticoids should not be routinely used in the treatment of infants with bronchiolitis, with a positive response to beta 2 agonists.

5. **What is the likely balance between good and harm?**

Evidence statement

There is no good evidence to support glucocorticoids in infants with bronchiolitis and a positive response to beta 2 agonists.

Overall quality of evidence

VERY LOW

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms	Consider	CONDITIONAL
Not known	Make a recommendation for research (see 8 below)	WEAK
Benefits probably don't outweigh harms	Consider against	CONDITIONAL
Harms probably outweigh benefits		
Benefits clearly don't outweigh harms	Recommend against	
Harms clearly outweigh benefits		STRONG

6. **Is the intervention/action implementable in the New Zealand and Australian context?**

Summary statement

Beta 2 agonists are widely used and available in Australia and New Zealand.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
<tr>
<td>No</td>
<td>Recommend/consider against</td>
</tr>
</tbody>
</table>

7. **Final recommendation**

Do not administer systemic or local glucocorticoids to infants presenting to hospital or hospitalised with bronchiolitis, with a positive response to beta 2 agonists.

Strength of recommendation

STONG

CONDITIONAL

WEAK

8. **Recommendations for research**

Studies of the use of glucocorticoids in infants presenting to hospital or hospitalised with bronchiolitis and with a positive response to beta 2 agonists are needed.
Question 11b: In infants presenting to hospital or hospitalised with bronchiolitis, with a positive response to beta 2 agonists, does administration of systemic or local glucocorticoids (nebulisation, oral, IM or IV) improve clinically relevant end-points?

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

A	One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias
B	One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias
C	One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias
D	Level IV studies or Level I to III studies/SRs with a high risk of bias

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

A	All studies consistent
B	Most studies consistent and inconsistency can be explained
C	Some inconsistency, reflecting genuine uncertainty around question
D	Evidence is not consistent
NA	Not applicable (one study only)

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

A	Very large
B	Substantial
C	Moderate
D	Slight/Restricted

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

A	Evidence directly generalisable to target population
B	Evidence directly generalisable to target population with some caveats
C	Evidence not directly generalisable to target population but could be sensibly applied
D	Evidence not directly generalisable to target population and hard to judge whether sensible to apply

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

A	Evidence directly applicable to Australian/New Zealand healthcare context
B	Evidence applicable to Australian/New Zealand healthcare context with few caveats
C	Evidence probably applicable to Australian/New Zealand healthcare context with some caveats
D	Evidence not applicable to Australian/New Zealand healthcare context

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))

There is no good quality evidence evaluating the effect of glucocorticoids in infants with bronchiolitis and a positive response to beta 2 agonists. Previously individual patient trials of beta 2 agonists have been suggested as a clinical option. However, given the high level of evidence (NHMRC A, GRADE strong) demonstrating no benefit of beta 2 agonists in infants presenting to or hospitalised with bronchiolitis, and that there is no well-established way to determine an “objective method of response” to beta 2 agonists in bronchiolitis, this option is no longer recommended. Although it is true that a small subset of children with bronchiolitis may have reversible airway obstruction resulting from smooth muscle constriction, attempts to define a subgroup of responders have not been successful to date. If a clinical trial of bronchodilators is undertaken, clinicians should note that the variability of the disease process, the host’s airway, and the clinical assessments, particularly scoring, would limit the clinician’s ability to observe a clinically relevant response to bronchodilators (13).
EVIDENCE STATEMENT MATRIX

(summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether it is sensible to apply</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>D</td>
<td>Evidence not applicable to Australian healthcare context</td>
</tr>
</tbody>
</table>

Evidence statement

Do not administer systemic or local glucocorticoids to infants presenting to hospital or hospitalised with bronchiolitis, with a positive response to beta 2 agonists.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

Do not administer systemic or local glucocorticoids to infants presenting to hospital or hospitalised with bronchiolitis, with a positive response to beta 2 agonists.

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
<tr>
<td>PP</td>
<td>Practice Point</td>
</tr>
</tbody>
</table>

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

- **Will this recommendation result in changes in usual care?**
 - YES
 - NO

- **Are there any resource implications associated with implementing this recommendation?**
 - YES
 - NO

- **Will the implementation of this recommendation require changes in the way care is currently organised?**
 - YES
 - NO

- **Are the guideline development group aware of any barriers to implementation of this recommendation?**
 - YES
 - NO
Question 11c. GRADE Evidence Summary

Question 11c: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of the combination of systemic or local glucocorticoids (nebulisation, oral, IM or IV) and adrenaline improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O₁: Rate of hospitalisation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O₂: Length of stay</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O₃: Rate of readmission</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O₄: Adverse outcomes</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2. Is there sufficient evidence to make a recommendation?

Evidence statement

The evidence for the administration of glucocorticoids in bronchiolitis is based on one Cochrane systematic meta-analysis (Fernandes et al (93), 17 RCTs, n=2,596) and three systematic reviews (10, 13, 65). The evidence for the administration of adrenaline in bronchiolitis is based on one Cochrane systematic meta-analysis (Hartling et al (72), 19 RCTs, n=2,256), three systematic reviews (10, 13, 65) and seven subsequent RCTs (73-77, 96, 97).

Evidence for the administration of the combination of glucocorticoids and adrenaline comes from a single high quality multi-centre RCT conducted in eight EDs in Canada (Plint et al (98), n=800). This trial compared adrenaline and high dose dexamethasone in a factorial design.

3. What benefit will the proposed intervention/action have?

Evidence statement

For the critical outcome of hospitalisation there is low quality evidence in support of the combination of glucocorticoids and adrenaline. Admission rates in unadjusted analysis of the Plint trial (98) suggested a possible benefit in the combination arm (adrenaline and glucocorticoid admission on day of enrolment RR 0.65, 95% CI 0.41 to 1.04; day 7 RR 0.65, 95% CI 0.45 to 0.93). However when adjusted for multiple comparisons in the factorial design this was no longer significant (adrenaline and glucocorticoid admission on day of enrolment RR 0.65, 95% CI 0.37 to 1.15; day 7 RR 0.65, 95% CI 0.41 to 1.03).

For the critical outcome of length of stay the combination of glucocorticoids and adrenaline is no better than placebo.

Judging the benefits in context

Given the evidence base for the single interventions, and the exploratory nature of the finding in the Plint trial (98), combination treatment with glucocorticoids and adrenaline should only be used in infants with bronchiolitis as part of an RCT.

4. What harm might the proposed intervention/action do?

Evidence statement

Adverse events were uncommon and generally self-limiting in the Plint study (98).

Judging the harms in context

Given the lack of evidence to support the use of glucocorticoids or adrenaline in isolation for the treatment of infants with bronchiolitis, and the exploratory nature of the findings suggesting possible benefit with combination of glucocorticoids and adrenaline, combination treatment of glucocorticoids and adrenaline should not be routinely used in the treatment of infants with bronchiolitis.

5. What is the likely balance between good and harm?

Evidence statement

There is no good evidence to support the combination of glucocorticoids and adrenaline treatment in infants with bronchiolitis.

Judging the balance of benefits and harms in context

- Benefits clearly outweigh harms: Recommend
- Benefits probably outweigh harms: Consider
- Not known: Make a recommendation for research (see 8 below)
- Benefits probably don't outweigh harms: Consider against
- Harms probably outweigh benefits: Consider against
- Benefits clearly don't outweigh harms: Recommend against
- Harms clearly outweigh benefits: STRONG

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement

Glucocorticoids and adrenaline are widely available in Australia and New Zealand, but rarely used in combination.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
</tbody>
</table>
Do not administer a combination of systemic or local glucocorticoids and adrenaline to infants presenting to hospital or hospitalised with bronchiolitis.

Strength of recommendation
- STRONG
- CONDITIONAL
- WEAK

Recommendations for research
Studies of the use of a combination of glucocorticoids and adrenaline in infants presenting to hospital or hospitalised with bronchiolitis are needed.

Question 11c.

NHMRC Evidence Summary

Question 11c: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of the combination of systemic or local glucocorticoids (nebulisation, oral, IM or IV) and adrenaline improve clinically relevant end-points?

Evidence table ref:

<table>
<thead>
<tr>
<th>1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Consistency (if only one study was available, rank this component as 'not applicable')</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single study from Canada.</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>
Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

Given the lack of evidence to support the use of glucocorticoids or adrenaline in isolation for the treatment of infants with bronchiolitis, and the exploratory nature of the findings suggesting possible benefit with combination of glucocorticoids and adrenaline, combination treatment of glucocorticoids and adrenaline should not be routinely used in the treatment of infants with bronchiolitis.

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>NA</td>
<td>Not applicable</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>B</td>
<td>Evidence directly generalizable to target population with some caveats</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
</tbody>
</table>

Evidence statement

Do not administer a combination of systemic or local glucocorticoids and adrenaline to infants presenting to hospital or hospitalised with bronchiolitis.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

Do not administer a combination of systemic or local glucocorticoids and adrenaline/epinephrine to infants presenting to hospital or hospitalised with bronchiolitis.

OVERALL GRADE OF RECOMMENDATION

- A: Body of evidence can be trusted to guide practice
- B: Body of evidence can be trusted to guide practice in most situations
- C: Body of evidence provides some support for recommendations but care should be taken in its application
- D: Body of evidence is weak and recommendation must be applied with caution
- PP: Practice Point

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

- Will this recommendation result in changes in usual care? YES
- Are there any resource implications associated with implementing this recommendation? YES
- Will the implementation of this recommendation require changes in the way care is currently organised? YES
- Are the guideline development group aware of any barriers to implementation of this recommendation? YES
Question 12a. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 12a: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of supplemental oxygen improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th></th>
<th>Quality of evidence</th>
<th></th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
<td>LOW</td>
<td>V. LOW</td>
</tr>
<tr>
<td>O1: Admission to hospital</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>O2: Length of stay in hospital</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>O3: Oxygen saturation target</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4: Feeding difficulties</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>O5: Readmission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Is there insufficient evidence to make a recommendation?

Evidence statement:
The evidence is based on a systematic review (99), an evidence based guideline (13), a prospective observational case series (100) and a retrospective observational cohort study (101). There was low - very low level evidence for the use supplemental oxygen although the evidence based guideline formed a weak recommendation based on low level evidence and reasoning from first principles. There was no evidence of the effect of oxygen therapy on readmission to hospital.

3. What benefit will the proposed intervention/action have?

Evidence statement
For the critical outcome of admission to hospital there is low evidence that administration of supplemental oxygen increases the rate of hospital admission.

For the critical outcome of length of stay in hospital there is low grade evidence that administration of oxygen prolongs hospital length of stay.

For the important outcome of oxygen saturation target there is low grade evidence for the appropriate oxygen saturation target for supplemental oxygen.

Judging the benefits in context
The evidence is applicable and generalisable to the New Zealand and Australian health settings.

4. What harm might the proposed intervention/action do?

Evidence statement
For the important outcome of feeding difficulties there is very low grade evidence that oxygen therapy affects feeding.

Judging the harms in context
There is little evidence to determine the effect of oxygen therapy on feeding difficulties.

5. What is the likely balance between good and harm?

Evidence statement
The benefit of supplemental oxygen therapy has not been specifically studied - rather an assumption about the benefits has been made and observational studies have looked at length of time of administration and feeding difficulties as a gauge of effectiveness.

Judging the balance of benefits and harms in context
Benefits probably outweigh harms.

- Benefits clearly outweigh harms
 - Recommend
 - STRONG

- Benefits probably outweigh harms
 - Consider
 - CONDITIONAL

- Not known
 - Make a recommendation for research (see 8 below)
 - WEAK

- Benefits probably don't outweigh harms
 - Consider against
 - CONDITIONAL

- Harms clearly outweigh harms
 - Recommend against
 - STRONG

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
Oxygen therapy has been based on practice by first principles and low to very low grade evidence. The evidence is applicable to the Australian and New Zealand setting.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
<tr>
<td>No</td>
<td>Recommend/consider against</td>
</tr>
</tbody>
</table>

7. Final recommendation

Consider the use of supplemental oxygen in the treatment of hypoxic (saturations less than 92%) infants with bronchiolitis.
8. **Recommendations for research**

Large randomised controlled studies with pre-defined indications and protocols for supplemental oxygen are required to determine the effect on hospital admission, length of stay, oxygen saturation targets and effect on feeding difficulties.

Question 12a. NHMRC Evidence Summary

Question 12a: In infants presenting to hospital or hospitalised with bronchiolitis, does administration of supplemental oxygen improve clinically relevant end-points?

1. **Evidence base** (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>One systematic review (Level I study) with a high risk of bias and one evidence based guideline (Level I study) with a moderate risk of bias. There have been no RCTs.</td>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>There has been one prospective observational case series of 68 infants (Level IV) and one retrospective observational cohort study of 102 infants (Level IV). All studies are rated moderate for risk of bias.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Consistency** *(if only one study was available, rank this component as 'not applicable')*

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies recommend the use of supplemental oxygen but there is no direct comparison with withholding therapy. Outcomes have been limited to length of stay in hospital and oxygen saturation targets with limited evaluation of other outcomes including no evidence for readmission.</td>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
</tbody>
</table>

3. **Clinical impact** *(indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)*

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The use of supplemental oxygen therapy on increasing admission rate and prolonging admissions has not been evaluated. The impact on these parameters has significant impact on wellbeing of infants as well as cost implications for health services.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. **Generalisability** *(how well does the body of evidence match the population and clinical settings being targeted by the guideline?)*

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current limited evidence has been obtained from similar health systems and can be generalised to Australian and New Zealand setting.</td>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
</tbody>
</table>

5. **Applicability** *(is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)*

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant to Australian and New Zealand setting.</td>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors *(indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))*

Administration of oxygen is used by reason of first principles.

EVIDENCE STATEMENT MATRIX *(summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)*

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
</tbody>
</table>
Clinical Impact
Moderate

Generalisability
Evidence directly generalisable to target population with some caveats

Applicability
Evidence directly applicable to Australian/New Zealand healthcare context

Evidence statement:
Supplemental oxygen therapy is used by reasoning of first principles and there is weak evidence for its effect on hospital admission, length of stay, oxygen saturation targets, or effect on feeding difficulties.

RECOMMENDATION *(What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)*

Consider the use of supplemental oxygen in the treatment of hypoxic (oxygen saturations less than 92%) infants with bronchiolitis.

<table>
<thead>
<tr>
<th>OVERALL GRADE OF RECOMMENDATION</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
<tr>
<td>PP</td>
<td>Practice Point</td>
</tr>
</tbody>
</table>

UNRESOLVED ISSUES *(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)*

- Consistent definition of oxygen saturation target demonstrating hypoxia and need for administration of oxygen
- Process of weaning the oxygen therapy

IMPLEMENTATION OF RECOMMENDATION *(Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)*

- **Will this recommendation result in changes in usual care?**
 - **YES**
 - **NO**
- **Are there any resource implications associated with implementing this recommendation?**
 - **YES**
 - **NO**
- **Will the implementation of this recommendation require changes in the way care is currently organised?**
 - **YES**
 - **NO**
- **Are the guideline development group aware of any barriers to implementation of this recommendation?**
 - **YES**
 - **NO**

Note: The table above contains the recommendations and their grades, along with the considerations for implementation.
Question 12b. **GRADE Evidence Summary**

Considered Judgement - Strength of recommendation

Question 12b: In infants presenting to hospital or hospitalised with bronchiolitis, what level of oxygen saturation should lead to commencement or discontinuation of supplemental oxygen to improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>Admission to hospital</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Length of stay in hospital</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oxygen saturation target</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Feeding difficulties</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Readmission to hospital</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2. **Is there is insufficient evidence to make a recommendation?**

The evidence relates to the role of saturations in patient management and is based on 2 systematic reviews (99, 102), an evidence based guideline (13) and two RCTs (103, 104). Additional evidence was from a prospective observational case series (100) and three retrospective observational studies (101, 105, 106).

3. **What benefit will the proposed intervention/action have?**

Evidence statement

For the critical outcome of admission to hospital there is moderate evidence that lower oxygen saturation levels increases the rate of admission independently of other factors.

For the critical outcome of length of stay in hospital there is low level evidence that lower oxygen saturations prolong length of stay.

For the critical outcome of oxygen saturation target there is moderate evidence in uncomplicated bronchiolitis that saturations less than 92% is an acceptable absolute target for supplemental oxygen.

Judging the benefits in context

The evidence is applicable and generalisable to the New Zealand and Australian health settings.

4. **What harm might the proposed intervention/action do?**

Evidence statement

For the important outcome of readmission there is high level evidence that oxygen level saturations do not affect readmissions to hospital.

For the important outcome of feeding difficulties there is very low evidence for the impact of oxygen saturations on resolution.

Judging the harms in context

Oxygen saturation targets less than 92% do not impact on reducing feeding difficulties or readmissions.

5. **What is the likely balance between good and harm?**

Evidence statement:

The harms probably outweigh the benefits.

Judging the balance of benefits and harms in context

Not known.

- **Benefits clearly outweigh harms**: Recommend STRONG
- **Benefits probably outweigh harms**: Consider CONDITIONAL
- **Not known**:
 - Make a recommendation for research (see 8 below) WEAK
- **Benefits probably don't outweigh harms**
 - **Harms probably outweigh benefits**: Recommend against STRONG
- **Benefits clearly don't outweigh harms**: Consider against CONDITIONAL

6. **Is the intervention/action implementable in the New Zealand and Australian context?**

Summary statement

Oxygen saturation level has been demonstrated to influence admission and length of stay. The level at which oxygen therapy should commence or be discontinued has been established less than 92%.

- **Yes** Recommend/consider
- **Not known** Consider economic evaluation
- **No** Recommend/consider against

7. **Final recommendation**

In uncomplicated bronchiolitis oxygen supplementation should be commenced if the oxygen... **Strength of recommendation**
saturation level is sustained at a level less than 92%. At oxygen saturation levels of 92% or greater oxygen therapy should be discontinued.

<table>
<thead>
<tr>
<th>STRONG</th>
<th>CONDITIONAL</th>
<th>WEAK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Recommendations for research

Further randomised controlled studies are needed to confirm the level of oxygen saturations to establish oxygen therapy.

The effect of sustained hypoxia on long term development needs to be measured.

Further research is needed in determining an appropriate oxygen saturation level at which to consider discharge of an infant from hospital with bronchiolitis.

Question 12b. NHMRC Evidence Summary

Question 12b: In infants presenting to hospital or hospitalised with bronchiolitis, what level of oxygen saturation should lead to commencement or discontinuation of supplemental oxygen to improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Consistency (if only one study was available, rank this component as ‘not applicable’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or Australasian Bronchiolitis Guideline 31 August 2016 80
EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/ several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
</tbody>
</table>

Evidence statement:
For the critical outcome of admission to hospital there is moderate evidence that lower oxygen saturation levels increases the rate of admission independently of other factors.

For the critical outcome of length of stay in hospital there is low level evidence that lower oxygen saturations prolong length of stay.

For the critical outcome of oxygen saturation target there is moderate evidence in uncomplicated bronchiolitis that saturations less than 92% is an acceptable target for supplemental oxygen.

RECOMMENDATION

In uncomplicated bronchiolitis oxygen supplementation should be commenced if the oxygen saturation level is sustained at a level less than 92%. At oxygen saturation levels of 92% or greater oxygen therapy should be discontinued.

OVERALL GRADE OF RECOMMENDATION

- **A**: Body of evidence can be trusted to guide practice
- **B**: Body of evidence can be trusted to guide practice in most situations
- **C**: Body of evidence provides some support for recommendations(s) but care should be taken in its application
- **D**: Body of evidence is weak and recommendation must be applied with caution

PP Practice Point

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

- Will this recommendation result in changes in usual care? **YES**
- Are there any resource implications associated with implementing this recommendation? **NO**
- Will the implementation of this recommendation require changes in the way care is currently organised? **YES**
- Are the guideline development group aware of any barriers to implementation of this recommendation? **NO**
Question 13. GRADE Evidence Summary

Question 13: In infants hospitalised with bronchiolitis does continuous monitoring of pulse oximetry beneficially change medical management or clinically relevant end-points.

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
<td>LOW</td>
</tr>
<tr>
<td>O1: Length of stay in hospital</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>O2: Thresholds for discharge oxygen saturations</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>O3: Frequency of nocturnal desaturations</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>O4: Maintenance of feeding</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>O5: Cost savings</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

2. Is there is insufficient evidence to make a recommendation?

The evidence is based on a systematic review and two high quality evidence reviews containing nine guidelines five systematic reviews and primary literature searches involving Medline, EMBASE and Cochrane. In addition, there was one randomised, double-blind, parallel-group trial involving 213 infants, one randomised, parallel-group, superiority clinical trial of 161 infants to continuous vs intermittent pulse oximetry and one prospective observational studies of 68 patients evaluating discharge oxygen saturation levels. A further three retrospective studies involved 439 infants.

3. What benefit will the proposed intervention/action have?

Evidence statement:

For the critical outcome of length of stay there is moderate quality evidence that continuous monitoring of pulse oximetry does not reduce hospital length of stay in non-hypoxic (saturations greater than or equal to 92%) infants.

For the critical outcome of threshold for discharge oxygen saturations, there is low quality evidence on the comparative effect of different discharge oxygen saturations thresholds.

For the critical outcome frequency of nocturnal desaturations there is very low quality evidence to indicate that the frequency of nocturnal desaturations influences length of stay.

Judging the benefits in context

The evidence is applicable and can be generalised to all acute health care facilities caring for bronchiolitic infants in the New Zealand and Australian health settings.

4. What harm might the proposed intervention/action do?

Evidence statement:

For the important outcome of maintenance of feeding there is very low quality evidence that continuous monitoring does not affect feeding during the course of the disease.

For the important outcome of cost there was no evidence of reduced cost savings in those infants admitted with bronchiolitis on continuous oximetry monitoring.

Judging the harms in context

5. What is the likely balance between good and harm?

Evidence statement:

The current evidence does not support continuous pulse oximetry monitoring.

Judging the balance of benefits and harms in context

Not Known

- Benefits clearly outweigh harms: Recommend
- Benefits probably outweigh harms: Consider
- Not known: Make a recommendation for research (see 8 below)
- Benefits probably don’t outweigh harms: Consider against
- Harms probably outweigh benefits
- Benefits clearly don’t outweigh harms: Recommend against
- Harms clearly outweigh benefits

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement

The benefit of continuous pulse oximetry in bronchiolitis has not been established and requires additional research to support its routine use in all settings.

Yes: Recommend/consider

Not known: Consider economic evaluation

No: Recommend/consider against

7. Final recommendation
Routine use of continuous oximetry is not required for medical management of non-hypoxic (saturations greater than or equal to 92%) infants not receiving oxygen, or stable infants receiving oxygen.

8. Recommendations for research

Randomised controlled studies are needed to establish use of continuous oximetry in the setting of hypoxic infants with bronchiolitis. Further studies are needed to determine what effect continuous oximetry monitoring has on time to discharge.

Question 13. In infants hospitalised with bronchiolitis does continuous monitoring of pulse oximetry beneficially change medical management or clinically relevant end-points?

Evidence table ref:

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Level of Evidence</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
<td>Low</td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
<td>Low</td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
<td>Moderate</td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
<td>High</td>
</tr>
</tbody>
</table>

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Clinical Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Generalisability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors (indicate how any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))

No direct evidence to address the question of oxygen saturation level.
EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>C</td>
<td>Slight/Restricted</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
</tbody>
</table>

Evidence statement:
There is low grade evidence demonstrating that there is no consistent benefit for the use of continuous pulse oximetry above intermittent oximetry for stable, non-hypoxic infants on admission, days on oxygen, dischage or hospital length of stay.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

<table>
<thead>
<tr>
<th>Routine use of continuous oximetry is not required for medical management of non-hypoxic (saturations greater than or equal to 92%) infants not receiving oxygen, or stable infants receiving oxygen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL GRADE OF RECOMMENDATION</td>
</tr>
<tr>
<td>A Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
<tr>
<td>PP Practice Point</td>
</tr>
</tbody>
</table>

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

<table>
<thead>
<tr>
<th>Will this recommendation result in changes in usual care?</th>
<th>YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce the use of continuous oximetry</td>
<td></td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>YES</td>
</tr>
<tr>
<td>Reduce admission length of stay and costs associated</td>
<td></td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>YES</td>
</tr>
<tr>
<td>Education and guidelines to support change in practice</td>
<td></td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>
Question 14. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 14: In infants hospitalised with bronchiolitis does the use of heated humidified high flow oxygen, or air, via nasal cannula improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Length of stay in hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2: Rate of PICU admission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3: Adverse Events</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>O4: Cost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Is there insufficient evidence to make a recommendation?**

There have been limited studies on HFNC in children with bronchiolitis during inpatient stay outside of the PICU. A Cochrane systematic review (109), one evidence based guideline (13), one RCT (110), two prospective studies (111, 112), four non-systematic reviews (113-116), and one retrospective cohort review (117) all provide low to very low level evidence for the benefit of HFNC. A prospective interventional study of 14 infants with bronchiolitis demonstrates reduction in work of breathing receiving HFNC (118).

There are insufficient studies and patients investigated to recommend HFNC as a standard therapy in a general paediatric unit.

3. **What benefit will the proposed intervention/action have?**

Evidence statement
For the critical outcome of length of stay in hospital there is low quality evidence that HFNC improves length of stay in hospital.

For the critical outcome for rate of PICU admission there is low quality evidence that HFNC reduces PICU admission rates.

Judging the benefits in context
The evidence is applicable and can be generalised to all acute health care facilities caring for bronchiolitic infants in the New Zealand and Australian health settings.

4. **What harm might the proposed intervention/action do?**

Evidence statement
For the important outcome of adverse events there is very low evidence that HFNC is safe.

For the important outcome of cost there is very low evidence that HFNC results in less health care cost overall.

Judging the harms in context
The evidence is applicable and can be generalised to all acute health care facilities caring for bronchiolitic infants in the New Zealand and Australian health settings.

5. **What is the likely balance between good and harm?**

Evidence statement
The benefits of HFNC therapy probably outweigh harm.

Judging the balance of benefits and harms in context
Benefit probably outweigh harms

Benefits clearly outweigh harms: Recommend
Benefits probably outweigh harms: Consider
Not known: Make a recommendation for research (see 8 below)

Benefits probably don’t outweigh harms

Harms probably outweigh benefits

Benefits clearly don’t outweigh harms

Harms clearly outweigh benefits: Recommend against

6. **Is the intervention/action implementable in the New Zealand and Australian context?**

Summary statement
HFNC in bronchiolitis is feasible therapy in the inpatient setting although the benefits have yet to be demonstrated to outweigh the harms.

Yes

Recommend/consider

Not known

Consider economic evaluation

No

Recommend/consider against

7. **Final recommendation**

HFNC in bronchiolitis can be considered in the inpatient setting in children with bronchiolitis with hypoxia (oxygen saturations 90-92%). Its use in children without hypoxia should be limited to the RCT setting only.

Strength of recommendation

STRONG

CONDITIONAL
Question 14. **NHMRC Evidence Summary**

|---|---|

1. **Evidence base** (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Evidence base</th>
<th>Evidence level and risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/ several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

2. **Consistency** (if only one study was available, rank this component as ‘not applicable’)

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
</tbody>
</table>

3. **Clinical impact** (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Clinical impact</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
</tbody>
</table>

4. **Generalisability** (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Generalisability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

5. **Applicability** (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)
Evidence Statement Matrix

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
</tbody>
</table>

Evidence statement:
The benefits of HFNC therapy probably outweigh harm.

Recommendation

RECOMMENDATION *(What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)*

HFNC in bronchiolitis can be considered in the inpatient setting in children with bronchiolitis with hypoxia (oxygen saturations 90-92%). Its use in children without hypoxia should be limited to the RCT setting only.

Overall Grade of Recommendation

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
<tr>
<td>PP</td>
<td>Practice Point</td>
</tr>
</tbody>
</table>

Implementation of Recommendation

- **Will this recommendation result in changes in usual care?**
 - YES
 - NO

- **Are there any resource implications associated with implementing this recommendation?**
 - YES
 - NO

- **Introduction of HFNC requires special equipment and training of staff. Successful implemental may reduce transfers to tertiary care.**

- **Will the implementation of this recommendation require changes in the way care is currently organised?**
 - YES
 - NO

- **Are the guideline development group aware of any barriers to implementation of this recommendation?**
 - YES
 - NO
Question 15. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 15: In infants hospitalised with bronchiolitis, does chest physiotherapy improve clinically relevant endpoints?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Change in severity status of bronchiolitis</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O2: Time to recovery/clinical stability</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O3: Oxygen saturation levels</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O4: Duration of oxygen supplementation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O5: Length of Hospital Stay</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O6: Complications of therapy</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O7: Heart rate variability</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2. Is there insufficient evidence to make a recommendation?

There is one Cochrane review (119) with nine clinical trials including 891 patients on the topic. In addition there is one low quality RCT (120), two prospective clinical trials (121, 122), three observational trials (123-125) of very low quality, and a further systematic review and guideline (10).

3. What benefit will the proposed intervention/action have?

Evidence statement

For the critical outcome of change in severity status of bronchiolitis there is moderate evidence that physiotherapy does not alter severity.

For the critical outcome of time to recovery/clinical stability there is high quality evidence that physiotherapy does not improve recovery or stability.

For the critical outcome of oxygen saturation levels there is very low level evidence of physiotherapy affecting oxygen saturation.

For the important outcome of duration of oxygen supplementation there is high quality evidence that duration of oxygen supplementation is not altered by physiotherapy.

For the important outcome of length of hospital stay there is high level evidence that length of stay is not altered by physiotherapy.

Judging the benefits in context

The evidence is probably applicable and generalisable to the New Zealand and Australian health settings.

4. What harm might the proposed intervention/action do?

Evidence statement

For the important outcome of complications of therapy there is high level evidence of minimal adverse effects resulting from physiotherapy.

For the important outcome of heart rate variability there is very low level evidence that heart rate variability is modified by physiotherapy.

Judging the harms in context

The evidence is probably applicable and generalisable to the New Zealand and Australian health settings.

5. What is the likely balance between good and harm?

Evidence statement

The benefits are not demonstrated to improve outcomes.

Judging the balance of benefits and harms in context

Benefits clearly don’t outweigh harms

Benefits probably outweigh harms

Benefits probably don’t outweigh harms

Harms probably outweigh benefits

Benefits clearly don’t outweigh harms

Harms clearly outweigh benefits

Overall quality of evidence

HIGH

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement

Australasian Bronchiolitis Guideline 31 August 2016
The evidence is probably applicable and generalisable to the New Zealand and Australian health settings.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
<tr>
<td>No</td>
<td>Recommend/consider against</td>
</tr>
</tbody>
</table>

7. Final recommendation

Chest physiotherapy is not recommended for routine use in infants with bronchiolitis.

<table>
<thead>
<tr>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
</tr>
<tr>
<td>CONDITIONAL</td>
</tr>
<tr>
<td>WEAK</td>
</tr>
</tbody>
</table>

8. Recommendations for research

Further research into newer specific techniques to determine the use in specific patient cohorts.

Question 15. NHMRC Evidence Summary

Question 15: In infants hospitalised with bronchiolitis, does chest physiotherapy improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>Evidence base (number of studies, level of evidence and risk of bias in the included studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is one Cochrane review (119) with nine clinical trials including 891 patients on the topic. In addition there is one low quality RCT (120), two prospective clinical trials (121, 122), three observational trials (123-125) of very low quality, and a further systematic review and guideline (10).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/3Rs with a high risk of bias</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consistency (if only one study was available, rank this component as 'not applicable')</th>
</tr>
</thead>
<tbody>
<tr>
<td>A All studies consistent</td>
</tr>
<tr>
<td>B Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D Evidence is not consistent</td>
</tr>
<tr>
<td>NA Not applicable (one study only)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Very large</td>
</tr>
<tr>
<td>B Substantial</td>
</tr>
<tr>
<td>C Moderate</td>
</tr>
<tr>
<td>D Slight/Restricted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>B Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>C Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>D Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td>B Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>C Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td>D Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>
Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/ several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
</tbody>
</table>

Evidence statement:
The benefits of chest physiotherapy are not demonstrated to improve outcomes.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

Chest physiotherapy is not recommended for routine use in infants with bronchiolitis.

OVERALL GRADE OF RECOMMENDATION

A Body of evidence can be trusted to guide practice
B Body of evidence can be trusted to guide practice in most situations
C Body of evidence provides some support for recommendation(s) but care should be taken in its application
D Body of evidence is weak and recommendation must be applied with caution
PP Practice Point

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

Will this recommendation result in changes in usual care? YES NO

Are there any resource implications associated with implementing this recommendation? YES NO

Will the implementation of this recommendation require changes in the way care is currently organised? YES NO

Are the guideline development group aware of any barriers to implementation of this recommendation? YES NO
Question 16a. NHMRC Evidence Summary

Question 16a: In infants hospitalised with bronchiolitis, does suctioning of the nose or naso pharynx improve clinically relevant end-points?

| Evidence table ref: Mussman 2013 (125). |

1. **Evidence base (number of studies, level of evidence and risk of bias in the included studies)**
 - There is only one clinical trial - retrospective comparative trial examining suctioning techniques and frequency (125).

2. **Outcome measures:**
 - Length of Stay in hospital
 - Adverse events

3. **Is there insufficient evidence to make a recommendation?**
 - There is only one retrospective comparative study (125) of 740 patients examining suction type and suction frequency. Three non-systematic reviews or guidelines refer to suction but without provision of references and are rated very low.

4. **What benefit will the proposed intervention/action have?**
 - For the critical outcome of length of stay in hospital there is moderate level evidence that deep nasal suctioning increases length of stay but frequent non-invasive superficial suctioning decreases length of stay.
 - The evidence is applicable and generalisable to the New Zealand and Australian health settings.

5. **What harm might the proposed intervention/action do?**
 - For the important outcome of the occurrence of adverse events there is very low level evidence.
 - The evidence is applicable and generalisable to the New Zealand and Australian health settings.

6. **What is the likely balance between good and harm?**
 - Benefits probably don't outweigh harms.
 - The overall quality of evidence is LOW.

7. **Is the intervention/action implementable in the New Zealand and Australian context?**
 - Yes
 - The use of deep suctioning in bronchiolitis appears to lengthen hospital stay while non-invasive suctioning may decrease length of stay.

8. **Strength of recommendation**
 - STRONG

Question 16a. GRADE Evidence Summary

Question 16a: In infants hospitalised with bronchiolitis, does suctioning of the nose or naso pharynx improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>Outcomes measures</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>O: Length of stay in hospital</td>
<td>MOD (x)</td>
<td>MOD (x)</td>
</tr>
<tr>
<td>O: Adverse events</td>
<td>LOW (x)</td>
<td>LOW (x)</td>
</tr>
</tbody>
</table>

2. **Is there insufficient evidence to make a recommendation?**
 - There is only one retrospective comparative study (125) of 740 patients examining suction type and suction frequency. Three non-systematic reviews or guidelines refer to suction but without provision of references and are rated very low.

3. **What benefit will the proposed intervention/action have?**
 - Evidence statement
 - For the critical outcome of length of stay in hospital there is moderate level evidence that deep nasal suctioning increases length of stay but frequent non-invasive superficial suctioning decreases length of stay.
 - Judging the benefits in context
 - The evidence is applicable and generalisable to the New Zealand and Australian health settings.

4. **What harm might the proposed intervention/action do?**
 - Evidence statement
 - For the important outcome of the occurrence of adverse events there is very low level evidence.
 - Judging the harms in context
 - The evidence is applicable and generalisable to the New Zealand and Australian health settings.

5. **What is the likely balance between good and harm?**
 - Evidence statement
 - The benefits probably don't outweigh harms.
 - Judging the balance of benefits and harms in context
 - Benefits probably don't outweigh harms.
 - Overall quality of evidence LOW

6. **Is the intervention/action implementable in the New Zealand and Australian context?**
 - Recommendation
 - The use of deep suctioning in bronchiolitis appears to lengthen hospital stay while non-invasive suctioning may decrease length of stay.

7. **Final recommendation**
 - Strength of recommendation
 - Nasal suction is not recommended as routine practice in the management of infants with bronchiolitis. Superficial suction may be considered to assist with feeding.

8. **Recommendations for research**
 - RCTs using pre-set protocols are needed.
Component | **Rating** | **Description**
--- | --- | ---
1. Evidence base | D | Level IV studies or Level I to III studies/SRs with a high risk of bias
2. Consistency | NA | Not applicable (one study only)
3. Clinical impact | D | Slight/Restricted
4. Generalisability | B | Evidence directly generalisable to target population with some caveats
5. Applicability | C | Evidence probably applicable to Australian/New Zealand healthcare context with some caveats

Evidence statement:
There is no evidence to support the use of superficial nasal suction.

RECOMMENDATION
Nasal suction is not recommended as routine practice in the management of infants with bronchiolitis. Superficial suction may be considered to assist with feeding.

OVERALL GRADE OF RECOMMENDATION
- A: Body of evidence can be trusted to guide practice
- B: Body of evidence can be trusted to guide practice in most situations
- C: Body of evidence provides some support for recommendations(s) but care should be taken in its application
- D: Body of evidence is weak and recommendation must be applied with caution
- PP: Practice Point

UNRESOLVED ISSUES
If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up

IMPLEMENTATION OF RECOMMENDATION
(Provide clear action statements where possible)

Will this recommendation result in changes in usual care?
YES
NO
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>YES</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>NO</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>
Question 16b. GRADE Evidence Summary

Question 16b: In infants hospitalised with bronchiolitis, does deep suctioning in comparison to superficial suctioning beneficially improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ot: Length of Stay in hospital</td>
<td>MOD</td>
<td>x</td>
</tr>
<tr>
<td>Ot: Adverse events</td>
<td>MOD</td>
<td>x</td>
</tr>
</tbody>
</table>

2. Is there is insufficient evidence to make a recommendation?

Evidence statement:
There is only one retrospective comparative study (125) of 740 patients examining both suction type and suction frequency.

3. What benefit will the proposed intervention/action have?

Evidence statement:
For the critical outcome of length of stay in hospital there is low level evidence that deep suctioning increases length of stay in comparison to superficial suctioning.

Evidence statement:
For the important outcome of adverse events there is very low level evidence that deep suction increases adverse events.

4. What harm might the proposed intervention/action do?

Judging the harms in context:
The evidence is applicable and generalisable to the New Zealand and Australian health settings.

5. What is the likely balance between good and harm?

Evidence statement:
Harms probably outweigh benefits of deep suctioning in comparison with superficial suctioning.

Judging the balance of benefits and harms in context:
Benefits clearly don't outweigh harms.

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement:
The use of deep suctioning in bronchiolitis appears to lengthen hospital stay in comparison to superficial suctioning.

7. Final recommendation

Deep nasal suction for the management of bronchiolitis is not recommended.

8. Recommendations for research

RCTs using pre-set protocols on use of nasal suction are needed.

Question 16b. NHMRC Evidence Summary

Question 16b: In infants hospitalised with bronchiolitis, does deep suctioning in comparison to superficial suctioning beneficially improve clinically relevant end-points?

Evidence table ref: Mussman 2013 (125).

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
<td>MOD</td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or several Level III studies with a low risk of bias</td>
<td>LOW</td>
</tr>
</tbody>
</table>
SR/several Level III studies with a low risk of bias
C One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias.
D Level IV studies or Level I to III studies/SRs with a high risk of bias

2. Consistency (if only one study was available, rank this component as 'not applicable')
A All studies consistent
B Most studies consistent and inconsistency can be explained
C Some inconsistency, reflecting genuine uncertainty around question
D Evidence is not consistent
NA Not applicable (one study only)

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)
A Very large
B Substantial
C Moderate
D Slight/Restricted

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)
A Evidence directly generalisable to target population
B Evidence directly generalisable to target population with some caveats
C Evidence not directly generalisable to target population but could be sensibly applied
D Evidence not directly generalisable to target population and hard to judge whether sensible to apply

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)
A Evidence directly applicable to Australian/New Zealand healthcare context
B Evidence applicable to Australian/New Zealand healthcare context with few caveats
C Evidence probably applicable to Australian/New Zealand healthcare context with some caveats
D Evidence not applicable to Australian/New Zealand healthcare context

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

Evidence Statement Matrix (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

Component	Rating	Description
Evidence base | D | Level IV studies or Level I to III studies/SRs with a high risk of bias
Consistency | NA | Not applicable (one study only)
Clinical Impact | D | Slight/Restricted
Generalisability | B | Evidence directly generalisable to target population with some caveats
Applicability | C | Evidence probably applicable to Australian/New Zealand healthcare context with some caveats

Evidence statement:
There is limited evidence that does not support the use of deep suctioning in comparison of superficial suctioning of the nose or naso-pharynx.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements when possible)
Deep nasal suction for the management of bronchiolitis is not recommended.

OVERALL GRADE OF RECOMMENDATION
| A | Body of evidence can be trusted to guide practice
| B | Body of evidence can be trusted to guide practice in most situations
| C | Body of evidence provides some support for recommendation(s) but care should be taken in its application
| D | Body of evidence is weak and recommendation must be applied with caution
PP | Practice Point

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

Will this recommendation result in changes in usual care? YES

Australasian Bronchiolitis Guideline 31 August 2016 95
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>NO</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>NO</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>NO</td>
</tr>
</tbody>
</table>
Question 17: In infants hospitalised with bronchiolitis, does the use of nasal saline drops improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH MOD LOW V. LOW</td>
<td>Critical Important Not Important</td>
</tr>
<tr>
<td>O₂ Saturations</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>O₂ Retractions</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>O₂ Dyspnoea</td>
<td>x x</td>
<td></td>
</tr>
</tbody>
</table>

2. Is there sufficient evidence to make a recommendation?

There is no Cochrane review. Two RCTs use administration of nasal saline as the control therapy in use of chest physiotherapy (120) or phenylephrine nasal drops (126). A guideline (127) and a review article (128) recommend nasal saline as a practice point.

3. What benefit will the proposed intervention/action have?

Evidence statement:
For the critical outcome of O₂ saturations there is very low evidence of effectiveness.

For the critical outcome of retractions there is very low evidence of improvement in work of breathing.

For the important outcome of dyspnoea there is very low evidence of improvement.

4. What harm might the proposed intervention/action do?

Evidence statement:
Not assessed.

5. What is the likely balance between good and harm?

Evidence statement:
The benefits are not known.

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement:
Evidence applicable to Australia and New Zealand practice.

Yes

Not known

No

7. Final recommendation

Routine nasal saline drops are not recommended. Trial of intermittent saline drops may be considered at time of feeding.

8. Recommendations for research

RCTs with pre-set protocols to establish the benefit or harm of nasal saline drops are needed.
Question 17: In infants hospitalised with bronchiolitis, does the use of nasal saline drops improve clinically relevant end-points?

Evidence table ref:

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Evidence base</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/ several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

There are no Cochrane or systematic reviews on the question. Two clinical trials have used nasal saline drops as the control group for unrelated interventions: physiotherapy and phenylephrine drops (120, 126). Nasal saline is recommended in guidelines and consensus statements as practice points.

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

<table>
<thead>
<tr>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

The intervention has not been specifically investigated so the clinical impact cannot be determined.

<table>
<thead>
<tr>
<th>Clinical impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Generalisability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))

No specific studies to evaluate the intervention.

EVIDENCE STATEMENT MATRIX (summarises the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
</tbody>
</table>

Evidence statement:

Australasian Bronchiolitis Guideline 31 August 2016 98
There is no evidence to guide the use of nasal saline solution in the infant of bronchiolitis.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

Routine nasal saline drops are not recommended. Trial of intermittent saline drops may be considered at time of feeding.

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>Body of evidence can be trusted to guide practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations but care should be taken in its application</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
<td></td>
</tr>
</tbody>
</table>

PP Practice Point

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td>YES</td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>NO</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>YES</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>YES</td>
</tr>
</tbody>
</table>

Australasian Bronchiolitis Guideline 31 August 2016 99
Question 18: GRADE Evidence Summary

Question 18: In infants hospitalised with bronchiolitis, does the use of nasal/bubble CPAP improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1 Need for mechanical ventilation</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O2 Duration of ED stay</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O3 Need for ICU admission</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O4 Adverse events</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Is there insufficient evidence to make a recommendation?

One Cochrane systematic review (129) analysed two RCTs with a total of 50 patients with low level of evidence and high risk of biases. Relevant clinical outcome such as intubation rates was addressed and a trend towards reduction in intubations shown with a lack of high-level significance.

A recent prospective observational study (130) of low quality evaluated general paediatric ward administration of nCPAP. A retrospective study (131) compared HFNC to nCPAP in the ICU setting only and was of very low quality. Two systematic reviews (116, 132) analysed the use of nCPAP for bronchiolitis.

3. What benefit will the proposed intervention/action have?

Evidence statement

There is very low level evidence that nCPAP reduces the need for mechanical ventilation.

There is no evidence that nCPAP affects the duration of ED stay.

There is very low level evidence that nCPAP affects the need for ICU admission.

Judging the benefits in context

The evidence is applicable and generalisable to the New Zealand and Australian health systems in relation to therapy outside of the ICU setting.

4. What harm might the proposed intervention/action do?

Evidence statement

There is very low level evidence that nCPAP affects the rate of adverse events.

Judging the harms in context

The evidence is probably applicable and generalisable to the New Zealand and Australian health systems in relation to therapy outside of the ICU setting.

5. What is the likely balance between good and harm?

Evidence statement

Benefits probably outweigh harms.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms

Recommend STRONG

Benefits probably outweigh harms

Consider CONDITIONAL

Not known

Make a recommendation for research (see 8 below) WEAK

Benefits probably don’t outweigh harms

Consider against CONDITIONAL

Harms probably outweigh benefits

Benefits clearly don’t outweigh harms

Recommend against STRONG

Harms clearly outweigh benefits

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement

The use of nCPAP outside of the paediatric intensive care in infants with bronchiolitis can be considered.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Recommend/consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not known</td>
<td>Consider economic evaluation</td>
</tr>
<tr>
<td>No</td>
<td>Recommend/consider against</td>
</tr>
</tbody>
</table>

7. Final recommendation

Nasal CPAP therapy for infants with bronchiolitis may be considered for the management of infants

Strength of recommendation

STRONG

CONDITIONAL

WEAK

8. Recommendations for research

Large RCT in paediatric wards and paediatric intensive care is needed. Direct comparison of HFNC and CPAP needs to be done.
Question 18.

NHMRC Evidence Summary

| --- | --- |

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

In the non-PICU setting there has been one low quality prospective study investigating nCPAP (130). A Cochrane review (129) of 2 low quality studies of 50 patients on nCPAP in the PICU setting with unclear conclusions on the benefit. One retrospective study of low quality (131) compared HFNC to nCPAP and there are two low quality systematic reviews (116, 132).

<table>
<thead>
<tr>
<th>Component Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

All studies are inconsistent as they evaluated different populations (PICU vs ward) and interventions (HFNC, nCPAP).

<table>
<thead>
<tr>
<th>Component Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Component Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Component Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Component Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
</tbody>
</table>

Evidence statement:
There is low-level quality evidence for the use of nasal continuous positive airway pressure in the ward inpatient setting.

RECOMMENDATION
(What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

<table>
<thead>
<tr>
<th>Nasal CPAP therapy for infants with bronchiolitis may be considered for the management of infants.</th>
</tr>
</thead>
</table>

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
</tbody>
</table>

PP Practice Point

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

<table>
<thead>
<tr>
<th>Question</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase in ward based respiratory support.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate training and support for ward staff.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 19: In infants hospitalised with bronchiolitis, is provision of home oxygen a safe alternative for management?

1. Outcome measures:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1: Length of stay in hospital</td>
<td>MOD</td>
<td>CRITICAL</td>
</tr>
<tr>
<td>O2: Readmission rate in seven days</td>
<td>LOW</td>
<td>IMPORTANT</td>
</tr>
<tr>
<td>O3: Length of oxygen therapy</td>
<td>LOW</td>
<td>IMPORTANT</td>
</tr>
<tr>
<td>O4: Adverse events</td>
<td>MOD</td>
<td>NOT IMPORTANT</td>
</tr>
<tr>
<td>O5: Cost savings</td>
<td>LOW</td>
<td>IMPORTANT</td>
</tr>
</tbody>
</table>

2. Is there insufficient evidence to make a recommendation? The evidence is based on two RCTs both with significantly methodological flaws. Bajaj et al’s study (133) was stopped before the enrolment of the desired number of patients in their sample-size calculation was achieved and Tie et al (134) had very low numbers to compare the two groups in terms of evaluating the cost savings and the patients were recruited over a single Australian bronchiolitis season. Additional evidence came from one prospective observational study (135), one retrospective comparative study (136) and three retrospective chart reviews (137-139).

3. What benefit will the proposed intervention/action have? Evidence statement

- For the critical outcome of length of stay in hospital there is very low quality evidence of a reduced length of stay in those treated with home oxygen therapy.
- For the critical outcome of total length of oxygen therapy there is very low quality evidence of a reduced length of oxygen therapy in those treated with home oxygen therapy.
- For the important outcome of cost savings there is very low quality evidence of a reduced cost saving in those treated with home oxygen therapy.

Judging the benefits in context

The evidence is applicable and can be generalised to most acute tertiary and metropolitan health care facilities caring for bronchiolitic infants with the intention of supplying home oxygen in the New Zealand and Australian health settings.

4. What harm might the proposed intervention/action do? Evidence statement

- For the critical outcome of readmission in seven days there is very low quality evidence of a reduced readmission rate in those treated with home oxygen therapy.
- For the important outcome of adverse events there is very low quality evidence of no increase in adverse events in those treated with home oxygen therapy.

Judging the harms in context

Evidence to date indicates no increased risk of harm in infants treated. However the studies have been underpowered or only observational with risk of imprecision and inconsistency. The true effect on harm has not been established.

5. What is the likely balance between good and harm? Evidence statement

- The benefits are likely to outweigh the harms.

Judging the balance of benefits and harms in context

Benefits probably outweigh harms.

Benefits clearly outweigh harms | Recommend | STRONG
Benefits probably outweigh harms | Consider | CONDITIONAL
Benefits clearly don’t outweigh harms | Make a recommendation for research (see 8 below) | WEAK
Benefits probably don’t outweigh harms | Consider against | CONDITIONAL
Harms clearly outweigh benefits | Recommend against | STRONG

6. Is the intervention/action implementable in the New Zealand and Australian context? Summary statement

Home oxygen therapy has been implemented in at least one Australian centre and with appropriate resourcing has potential to be more widely implemented.

Yes | Recommend/consider
Not known | Consider economic evaluation
No | Recommend/consider against
7. Final recommendation

After a period of observation, infants at low risk for severe bronchiolitis can be considered for discharge on home oxygen as part of an organised ‘Home Oxygen Program’ which has clear ‘Return to Hospital’ advice.

Strength of recommendation

| STRONG | CONDITIONAL | WEAK |

8. Recommendations for research

Large randomised controlled study with pre-defined outcomes and use of oxygen therapy is required to establish the position of this therapy in bronchiolitis.

Question 19. **NHMRC Evidence Summary**

Question 19: In infants hospitalised with bronchiolitis, is provision of home oxygen a safe alternative for management?

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

No systematic reviews.

Two RCTs involving 136 infants (Level III-1). Both studies are rated high for risk of bias.

There has been one additional prospective observational study of 112 infants (Level IV) a retrospective historical control study of 692 infants and three retrospective chart reviews of 1060 children (Level III-3 - IV). All studies are rated low for risk of bias.

A One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias

B One or two Level II studies with a low risk of bias, or SR/ several Level III studies with a low risk of bias

C One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias

D Level IV studies or Level I to III studies/SRs with a high risk of bias

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

Evidence is consistent that home oxygen therapy reduces length of stay in hospital. However, studies are variable in quality and reporting of all outcomes.

A All studies consistent

B Most studies consistent and inconsistency can be explained

C Some inconsistency, reflecting genuine uncertainty around question

D Evidence is not consistent

NA Not applicable (one study only)

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

Length of stay in hospital for the individual patient is reduced but no study has compared the total length of care for patients both in hospital and at home while receiving oxygen therapy. There is potential for cost savings and positive patient satisfaction but only one study has looked at resource implications for community practice. There appears to be no increase in adverse events or change in readmission rates following discharge.

A Very large

B Substantial

C Moderate

D Slight/Restricted

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

The majority of the studies were conducted in North America in an elevated altitude where home oxygen therapy is used frequently. 2 studies were from Australia and hence generalizable to Australia and New Zealand.

A Evidence directly generalisable to target population

B Evidence directly generalisable to target population with some caveats

C Evidence not directly generalisable to target population but could be sensibly applied

D Evidence not directly generalisable to target population and hard to judge whether sensible to apply

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

The results are directly applicable to the Australian/New Zealand healthcare context. The provision of home oxygen services would require some individual health services to provide appropriate equipment and follow up not currently available.

A Evidence directly applicable to Australian/New Zealand healthcare context

B Evidence applicable to Australian/New Zealand healthcare context with few caveats

C Evidence probably applicable to Australian/New Zealand healthcare context with some caveats

D Evidence not applicable to Australian/New Zealand healthcare context

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

Australasian Bronchiolitis Guideline 31 August 2016 104
Evidence statement:
There is some evidence of benefits to infants with bronchiolitis being considered for home oxygen therapy after a suitable period of observation in hospital. The evidence is likely to be generalizable to many health services in Australia and New Zealand.

RECOMMENDATION *(What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)*

After a period of observation, infants at low risk for severe bronchiolitis can be considered for discharge on home oxygen as part of an organised 'Home Oxygen Program' which has clear 'Return to Hospital' advice.

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendation(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
<tr>
<td>PP</td>
<td>Practice Point</td>
</tr>
</tbody>
</table>

UNRESOLVED ISSUES *(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)*

Studies were inconsistent in determining the length of time before patients were deemed suitable for discharge home on oxygen and after being sent home how the oxygen was weaned. Studies were underpowered.

IMPLEMENTATION OF RECOMMENDATION *(Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)*

- Will this recommendation result in changes in usual care? **YES**
- Are there any resource implications associated with implementing this recommendation? **YES**
- Will the implementation of this recommendation require changes in the way care is currently organised? **YES**
- Are the guideline development group aware of any barriers to implementation of this recommendation? **YES**

Component	**Rating**	**Description**
1. Evidence base | C | One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias
2. Consistency | C | Some inconsistency, reflecting genuine uncertainty around question
3. Clinical Impact | C | Moderate
4. Generalisability | B | Evidence directly generalisable to target population with some caveats
5. Applicability | C | Evidence probably applicable to Australian/New Zealand healthcare context with some caveats
Question 20a. GRADE Evidence Summary

Considered Judgment - Strength of recommendation

Question 20a: In infants presenting to hospital or hospitalized with bronchiolitis, does the use of antibiotic medication improve clinically relevant endpoints.

1. Outcome measures:

<table>
<thead>
<tr>
<th></th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Length of hospital stay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2: Hospital readmission within 6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3: Adverse effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4: PICU admission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5: Persistent respiratory symptoms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Is there insufficient evidence to make a recommendation?

The evidence is based on two Cochrane systematic reviews. The first review (140) contains seven RCTs involving 824 participants. In the second systematic review (141) only a single study of 30 infants met inclusion criteria. Subsequently there have been a two further RCTs of 40 (142) and 219 (143) infants.

3. What benefit will the proposed intervention/action have?

Evidence statement
For the critical outcome of length of stay there is moderate quality evidence of no benefit of antibiotics compared to placebo.

Quality of evidence
MODERATE

Judging the benefits in context
The evidence is applicable and generalizable to the New Zealand and Australian setting.

4. What harm might the proposed intervention/action do?

Evidence statement
For the important outcome of adverse effects there was no difference found in adverse gastro-intestinal effects with antibiotic use in a study of 40 infants (167) and a study of 219 infants (143). There were no deaths reported in any of the included studies.

Quality of evidence
MODERATE

Judging the harms in context
Bronchiolitis is a viral infection and the low risk of secondary bacterial infection needs to be balanced with the significant harms of antibiotic use, including rash, diarrhoea, vomiting as well as increased hospital and community antibiotic resistance.

5. What is the likely balance between good and harm?

Evidence statement
Harms probably outweigh the benefits.

Quality of evidence
MODERATE

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms	Consider	CONDITIONAL
Not known	Make a recommendation for research (see 8 below)	WEAK
Benefits probably don’t outweigh harms	Consider against	CONDITIONAL
Harms probably outweigh benefits	Recommend against	STRONG
Benefits clearly don’t outweigh harms	Consider against	
Harms clearly outweigh benefits	Recommend against	

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
There is insufficient evidence to support the use of antibiotics for infants with bronchiolitis. Although macrolide antibiotics have both antibiotic and anti-inflammatory properties their use for treatment of viral bronchiolitis is not justified.

Yes | Recommend/consider

Not known | Consider economic evaluation

No | Recommend/consider against

Australasian Bronchiolitis Guideline 31 August 2016 106
7. Final recommendation

Do not use antibiotics to treat infants with bronchiolitis.

<table>
<thead>
<tr>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
</tr>
<tr>
<td>CONDITIONAL</td>
</tr>
<tr>
<td>WEAK</td>
</tr>
</tbody>
</table>

8. Recommendations for research

Studies on subgroups of high risk patients who may benefit from antibiotics, including those admitted to ICU with severe bronchiolitis are needed. The optimal treatment regime (single dose to 14 days) and timing (acute versus post-acute) is yet to be established.

Question 20a. NHMRC Evidence Summary

Question 20a: In infants presenting to hospital or hospitalised with bronchiolitis, does the use of antibiotic medication improve clinically relevant end-points?

<table>
<thead>
<tr>
<th>Evidence base (number of studies, level of evidence and risk of bias in the included studies)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>The evidence is based on two Cochrane systematic reviews and an RCT. The first review (140) contains seven RCTs involving 824 participants comparing antibiotics to placebo or other. In the second systematic review for persistent symptoms following acute bronchiolitis (141) only a single study of 30 infants met inclusion criteria. Subsequently there have been a two further RCTs of 40 (142) and 219 (143) infants. Two studies with a high risk of bias showed reduced hospital admission (167) or mixed results for effects on wheeze (169).</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency (if only one study was available, rank this component as ‘not applicable’)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>For length of stay, data from three studies was combined (141, 157, 171) and showed no difference between azithromycin and placebo (pooled MD -0.58, 95% CI -1.18 to 0.02) with acceptable statistical heterogeneity. This result was further supported by a subsequent RCT of 219 infants (143). Two studies providing data to compare hospital readmissions showed no significant difference but data was not pooled due to risk of heterogeneity (142). This result was further supported by a subsequent RCT of 219 infants (143).</td>
<td>All studies consistent</td>
<td>Most studies consistent and inconsistency can be explained</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>There is no evidence of benefit of antibiotics and there are real concerns of potential harm caused by adverse effects such as gastrointestinal upset, rash and impact on community and hospital antibiotic resistance.</td>
<td>Very large</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Slight/Restricted</td>
</tr>
<tr>
<td>4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Two studies were conducted in Bangladesh, while three studies were conducted in high income countries (140). One study was conducted in indigenous infants in Australia and New Zealand (143). All studies included participants who were hospitalised and only one recruited from an outpatients department.</td>
<td>Evidence directly generalisable to target population</td>
<td>Evidence directly generalisable to target population with some caveats</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
<tr>
<td>5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Use of antibiotics for hospitalised febrile young infants is common but the evidence supports the low incidence of serious bacterial infection in infants with a clinical diagnosis of bronchiolitis. One study was conducted in indigenous infants in Australia and New Zealand (143).</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)
Bronchiolitis is a clinical diagnosis, caused by viral infection with extremely low rates of secondary bacterial infection, other than PICU population.

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>A</td>
<td>Evidence directly generalizable to target population</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Evidence statement

There is evidence to support not using antibiotics for treating infants with a clinical diagnosis of bronchiolitis.

RECOMMENDATION

Do not use antibiotics to treat infants with bronchiolitis.

OVERALL GRADE OF RECOMMENDATION

A Body of evidence can be trusted to guide practice

B Body of evidence can be trusted to guide practice in most situations

C Body of evidence provides some support for recommendations(s) but care should be taken in its application

D Body of evidence is weak and recommendation must be applied with caution

PP Practice Point

UNRESOLVED ISSUES

Sub-populations of high risk groups with severe bronchiolitis require further study.

IMPLEMENTATION OF RECOMMENDATION

(Provide yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

- Will this recommendation result in changes in usual care? **YES**
- A number of infants with bronchiolitis in Australia and New Zealand receive antibiotics. **NO**
- Are there any resource implications associated with implementing this recommendation? **YES**
- NO
- Will the implementation of this recommendation require changes in the way care is currently organised? **YES**
- NO
- Are the guideline development group aware of any barriers to implementation of this recommendation? **YES**
- NO
Question 20b. GRADE Evidence Summary

Considered Judgment - Strength of recommendation

Question 20b: In Infants presenting to hospital or hospitalised with bronchiolitis, does the use of azithromycin medication improve clinically relevant end points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1 Length of stay</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O2 Hospital readmission</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O3 Duration of fever</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O4 Occurrence of recurrent wheeze</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O5 Adverse effects</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O6 PICU admission</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2. Is there is insufficient evidence to make a recommendation?

Evidence statement
The evidence is based on one systematic review containing three RCTs that compared azithromycin to placebo, involving 353 hospitalised infants (140). Subsequently there has been two RCTs, one of 40 infants (142), and one of 219 infants (143).

3. What benefit will the proposed intervention/action have?

Evidence statement
For the critical outcome of length of stay there is moderate quality evidence of no difference in length of stay for those treated with azithromycin versus placebo.

For the critical outcome of PICU admission there is low quality evidence of no difference in admission rate for those treated with azithromycin versus placebo.

For symptom resolution, including duration of fever, there is moderate quality evidence that treatment with azithromycin has no benefit over placebo.

For the occurrence of recurrent wheeze, there is low quality evidence that azithromycin results in prolonged time to third wheezing episode.

Judging the benefits in context
The evidence is applicable and generalizable to the Australian and New Zealand health settings.

4. What harm might the proposed intervention/action do?

Evidence statement
For the important outcome of hospital readmission there is moderate quality evidence of no increase in readmission rate in those treated with azithromycin.

For the important outcome of adverse effects there is low quality evidence of no difference in reported gastrointestinal side effects in those treated with azithromycin.

Judging the harms in context
Evidence shows no increase in harms but the lack of beneficial effect must be weighed against the possibility of adverse effects, increasing antibiotic resistance and cost of treatment.

5. What is the likely balance between good and harm?

Evidence statement
The harms probably outweigh the benefits.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms	Consider	CONDITIONAL
Not known	Make a recommendation for research (see 8 below)	WEAK
Benefits probably don’t outweigh harms	Consider against	CONDITIONAL
Harms probably outweigh benefits	Recommend against	STRONG
Benefits clearly don’t outweigh harms		
Harms clearly outweigh benefits		

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
Azithromycin is currently used for treatment of children with bronchiectasis and cystic fibrosis; however the anti-inflammatory effects have not been shown to benefit infants with bronchiolitis.

Yes Recommend/consider
Not known Consider economic evaluation

No Recommend/consider against

7. Final recommendation

Do not use azithromycin for treatment of infants admitted to hospital with bronchiolitis.

<table>
<thead>
<tr>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
</tr>
<tr>
<td>CONDITIONAL</td>
</tr>
<tr>
<td>WEAK</td>
</tr>
</tbody>
</table>

8. Recommendations for research

Nil.

Question 20b. NHMRC Evidence Summary

Question 20b: In infants presenting to hospital or hospitalised with bronchiolitis, does the use of azithromycin medication improve clinically relevant end points?

Evidence table ref: Beigelman 2014, Farley 2014, Macias 2015, McCallum 2015 (140, 142, 143, 172)

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

The evidence is based on one systematic review containing three RCTs that compared azithromycin to placebo, involving 353 hospitalised infants (140). All studies are rated are rated low or unclear risk of bias.

Subsequently there has been two RCTs, one of 40 infants (142), and one of 219 infants (143).

<table>
<thead>
<tr>
<th>Level</th>
<th>Evidence Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

Evidence is consistent that the use of azithromycin for treatment of bronchiolitis did not reduce length of stay, hospital readmission rates and PICU admission.

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Evidence consistent that the use of azithromycin for treatment of bronchiolitis did not reduce length of stay, hospital readmission rates and PICU admission.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and hence the clinical impact of the intervention could not be determined)

Rates of antibiotic use in bronchiolitis have been reported as high (15 – 43% for inpatients in a multicentre observational study)(172).

The use of azithromycin in variable dosing regimens has no clinical benefit and possible harms.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Rates of antibiotic use in bronchiolitis have been reported as high (15 – 43% for inpatients in a multicentre observational study)(172). The use of azithromycin in variable dosing regimens has no clinical benefit and possible harms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

Three studies were conducted in high income countries and one study was conducted in indigenous infants in Australia and New Zealand (143).

The patients are directly generalisable to those seen in Australia and New Zealand.

<table>
<thead>
<tr>
<th>Generalisability</th>
<th>Three studies were conducted in high income countries and one study was conducted in indigenous infants in Australia and New Zealand (143). The patients are directly generalisable to those seen in Australia and New Zealand.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

The results are applicable to the Australian/New Zealand healthcare context with a few caveats. One study of 219 infants was conducted in indigenous infants in Australia and New Zealand (143).

<table>
<thead>
<tr>
<th>Applicability</th>
<th>The results are applicable to the Australian/New Zealand healthcare context with a few caveats. One study of 219 infants was conducted in indigenous infants in Australia and New Zealand (143).</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))

Australasian Bronchiolitis Guideline 31 August 2016

110
EVIDENCE STATEMENT MATRIX

(-summarize the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>A</td>
<td>Evidence directly generalizable to target population</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Evidence statement

Currently there is no evidence of benefit.

RECOMMENDATION

(What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

Do not use azithromycin for treatment of infants admitted to hospital with bronchiolitis.

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
<tr>
<td>PP</td>
<td>Practice Point</td>
</tr>
</tbody>
</table>

UNRESOLVED ISSUES

(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION

(Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td>YES</td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>YES</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>YES</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>YES</td>
</tr>
</tbody>
</table>
Question 20c. GRADE Evidence Summary

Considered Judgment - Strength of recommendation

Question 20c: In infants presenting to hospital or hospitalised with bronchiolitis, does the use of antibiotic medication in infants who are at risk of developing bronchiectasis, improve clinically relevant end-points?

1. **Outcome measures:**
 - **Quality of evidence**
 - HIGH
 - MOD
 - LOW
 - V. LOW
 - **Importance of outcome in making a decision**
 - Critical
 - Important
 - Not Important
 - O: Hospital readmission
 - X
 - X
 - O: Recurrent symptoms
 - X
 - X
 - O: Prolonged symptoms
 - X
 - X
 - O: Bronchiectasis
 - X
 - X

2. **Is there is insufficient evidence to make a recommendation?**

 Evidence statement
 One RCT of azithromycin versus placebo, once a week for three weeks, in 219 indigenous infants enrolled in Australia and New Zealand found no difference in length of hospital stay, symptoms at 21 days, adverse events or readmission rates at six months (143).

3. **What benefit will the proposed intervention/action have?**

 Evidence statement
 One RCT of azithromycin versus placebo, once a week for three weeks, in 219 indigenous infants enrolled in Australia and New Zealand found no difference in length of hospital stay, symptoms at 21 days, adverse events or readmission rates at six months (143). There are no reports on bronchiectasis as an outcome.

4. **What harm might the proposed intervention/action do?**

 Evidence statement
 There are concerns regarding development of macrolide resistance.

5. **What is the likely balance between good and harm?**

 Evidence statement
 There is one negative RCT (143), reporting surrogate end-points for the critical outcome of bronchiectasis, and concern regarding the development of macrolide resistance.

6. **Is the intervention/action implementable in the New Zealand and Australian context?**

 Summary statement
 Evidence applicable.

 - Yes: Recommend
 - Not known: Consider economic evaluation
 - No: Recommend/consider against

7. **Final recommendation**

 Strength of recommendation
 Do not use azithromycin for treatment of infants admitted to hospital with bronchiolitis who are at risk of developing bronchiectasis.

8. **Recommendations for research**

 Evidence table ref: Australasian Bronchiolitis Guideline 31 August 2016 112
of antibiotic medication in infants who are at risk of developing bronchiectasis, improve clinically relevant end-points?

Nil studies.

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>3. Clinical impact</td>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/ SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only one study (143) has addressed the question.</td>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>One RCT of azithromycin versus placebo, once a week for three weeks, in 219 indigenous infants enrolled in Australia and New Zealand found no difference in length of hospital stay, symptoms at 21 days, adverse events or readmission rates at six months (143).</td>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>One RCT enrolled 219 indigenous infants in Australia and New Zealand (143).</td>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>One RCT enrolled 219 indigenous infants in Australia and New Zealand (143).</td>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

EVIDENCE STATEMENT MATRIX (summarises the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

There is one negative RCT, reporting surrogate end-points for the critical outcome of bronchiectasis, and concern regarding the development of macrolide resistance.

RECOMMENDATION (What recommendation(s) does the guideline development group draw from this)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence statement</td>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
</tbody>
</table>

| OVERALL GRADE OF RECOMMENDATION | A | Body of evidence can be trusted to guide practice |
Do not use azithromycin for treatment of infants admitted to hospital with bronchiolitis who are at risk of developing bronchiectasis.

<table>
<thead>
<tr>
<th>Evidence Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
</tbody>
</table>

UNRESOLVED ISSUES

(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

The critical outcome of bronchiectasis is not reported.

IMPLEMENTATION OF RECOMMENDATION

(Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

<table>
<thead>
<tr>
<th>Question</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 21a. GRADE Evidence Summary

Considered Judgment - Strength of recommendation

Question 21a: In infants presenting to hospital or hospitalised with bronchiolitis, does the use of non-oral rehydration improve clinically relevant end points?

1. Outcome measures: Quality of evidence Importance of outcome in making a decision

<table>
<thead>
<tr>
<th></th>
<th>HIGH</th>
<th>MOD</th>
<th>LOW</th>
<th>V. LOW</th>
<th>Critical</th>
<th>Important</th>
<th>Not Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1: Length of stay</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2: ICU admission</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Is there insufficient evidence to make a recommendation?

Evidence statement
A retrospective cohort study of 102 infants (45) admitted to ICU with severe bronchiolitis showed that mortality, ventilator time and duration of stay in ICU was significantly different between subjects with hyponatraemia and those without. Data of the type of fluid, amount of fluid, and rate of administration were not available in this retrospective study.

A prospective cohort study of 36 infants with moderate bronchiolitis who received a standard parenteral hypotonic solution showed drop in serum sodium and osmolality compared to admission despite improvement in respiratory parameters (146). An earlier study (173) of hyponatraemia in 91 infants with severe bronchiolitis requiring ICU admission, with 4% suffering hyponatraemic seizures, showed that three of the four had received hypotonic fluids.

There is insufficient evidence to make recommendations about the use of non-oral hydration but caution about the use of hypotonic IV fluids exists.

3. What benefit will the proposed intervention/action have?

Evidence statement
There is insufficient evidence to make recommendations about the use of non-oral hydration.

Judging the benefits in context

Quality of evidence VERY LOW

4. What harm might the proposed intervention/action do?

Evidence statement
There are serious concerns with the administration of hypotonic parenteral fluids to infants with bronchiolitis due to the risk of hyponatraemia and seizures.

Judging the harms in context

Quality of evidence VERY LOW

5. What is the likely balance between good and harm?

Evidence statement
Supplemental hydration is recommended to avoid renal failure in those not tolerating oral hydration (based on first principles). Evidence regarding the ideal volume of non-oral rehydration currently does not exist. There remains concern regarding hyponatraemia.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms Recommend STRONG
Benefits probably outweigh harms Consider CONDITIONAL
Not known Make a recommendation for research (see 8 below) WEAK
Benefits probably don't outweigh harms Consider against CONDITIONAL
Harms probably outweigh benefits
Benefits clearly don’t outweigh harms Recommend against
Harms clearly outweigh benefits

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
Non-oral hydration is routinely used in Australia and New Zealand.

Yes Recommend/consider
Not known Consider economic evaluation
No Recommend/consider against

7. Final recommendation

Supplemental hydration is recommended for infants who cannot maintain hydration orally. Strength of recommendation

STRONG
CONDITIONAL
WEAK

8. Recommendations for research

The ideal volume (restricted versus 100% maintenance) and type of non-oral fluids (NG rehydration solutions or milk, or type of isotonic IV solution) to give to infants with bronchiolitis has not been studied.
Question 21a. NHMRC Evidence Summary

Question: In infants presenting to hospital or hospitalised with bronchiolitis, does the use of non-oral rehydration improve clinically relevant end points?

Evidence table ref: Luu 2013, Rodrigues 2014 (45, 146).

1. **Evidence base** (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>N/A</td>
<td>Not applicable (one study only)</td>
</tr>
<tr>
<td>3. Clinical impact</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
</tbody>
</table>

Evidence statement

Supplemental hydration is recommended to avoid renal failure in those not tolerating oral hydration (based on first principles). Evidence regarding the ideal volume of non-oral rehydration currently does not exist. There remains concern regarding hyponatraemia.

OVERALL GRADE OF RECOMMENDATION

Supplemental hydration is recommended for infants who cannot maintain hydration orally.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
</tbody>
</table>

Practice Point

UNRESOLVED ISSUES (If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

The ideal volume and type of non-oral fluids to give to infants with bronchiolitis has not been studied.

IMPLEMENTATION OF RECOMMENDATION (Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td>YES</td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>YES</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>YES</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>YES</td>
</tr>
</tbody>
</table>
Question 21b. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 21b: In infants presenting to hospital or hospitalised with bronchiolitis, what forms of non-oral hydration improve clinically relevant end points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH</td>
<td>MOD</td>
</tr>
<tr>
<td>O1: Length of stay</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O2: Adverse effects</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O3: Hospital readmission</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O4: Success of insertion</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2. Is there is insufficient evidence to make a recommendation?

Evidence statement

The evidence is based on one large randomized control (145) trial comparing NG and IV rehydration in 759 infants admitted to hospital with bronchiolitis and a small randomised prospective pilot study (174) of 51 infants with high dropout rate comparing IV fluids and gastric tube feeding. There have been no systematic reviews on the question.

3. What benefit will the proposed intervention/action have?

Evidence statement

For the critical outcome of length of stay there is moderate level evidence that both NG and IV routes are acceptable means for non-oral hydration with no statistical difference in mean length of stay for IV rehydration 86.6 hours (SD 58.9) versus 82.2 hours (SD 58.8) for NG feeds (145).

Judging the benefits in context

For the important outcome of success of insertion there is moderate quality evidence to guide treatment. 85% of infants assigned NG rehydration had one insertion attempt, compared to 56% for IV hydration (p< 0.0001) with 20% of those with IV attempts recorded having three or more attempts.

For the important outcome of adverse effects there is moderate quality evidence of no difference between IV and NG rehydration. The most common complications were NG tube pulled out (131 infants) or IV fluid extravasation (80 infants). Other adverse effects including IV line site bruising, nasal trauma occurred in 11% of those who received randomly allocated treatment (9% for NG versus 14% for IV). There were no events of clinical aspiration recorded in either study (145, 174).

For the important outcome of hospital readmission for bronchiolitis there is low quality evidence regarding the difference between IV and NG rehydration due to the low numbers of patients with 1.6% for both groups.

Judging the harms in context

Non-oral hydration is essential when an infant with bronchiolitis is unable to maintain oral feeding due to severity of illness.

4. What harm might the proposed intervention/action do?

Evidence statement

For the important outcome of hospital readmission for bronchiolitis there is low quality evidence regarding the difference between IV and NG rehydration due to the low numbers of patients with 1.6% for both groups.

Judging the harms in context

Non-oral hydration is essential when an infant with bronchiolitis is unable to maintain oral feeding due to severity of illness.

5. What is the likely balance between good and harm?

Evidence statement

NG and IV hydration appear to be similar, although IV insertion requires more attempts.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms | Consider | CONDITIONAL
Not known | Make a recommendation for research (see 8 below) | WEAK
Benefits probably don't outweigh harms | Consider against | CONDITIONAL
Harms probably outweigh benefits | |
Benefits clearly don’t outweigh harms | Recommend against | |
Harms clearly outweigh benefits | |

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement

Both IV and NG means of hydration are standard treatment for infants with bronchiolitis admitted to hospital in Australia and New Zealand.

Yes | Recommend/consider
Not known | Consider economic evaluation
No | Recommend/consider against

7. Final recommendation

Both NG and IV routes are acceptable means for non-oral hydration in infants admitted to...
The use of non-oral hydration in infants less than two months has not been studied as they were excluded from published studies.

Question 21b. NHMRC Evidence Summary

Question 21b: In infants presenting to hospital or hospitalised with bronchiolitis, what forms of non-oral hydration improve clinically relevant end points?

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td>3. Clinical impact</td>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation))

<table>
<thead>
<tr>
<th>Other factors</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

The large multicentre RCT (Oakley 2013) enrolled infants aged 2 months to 12 months, who presented to EDs in seven hospitals in Australia and New Zealand across three bronchiolitis seasons.

Both means of non-oral hydration are appropriate to hydrate infants however higher success rate with fewer insertion attempts using NG tube feeding favours this method and may support change in practice.

Both IV and NG means of hydration are standard treatment for infants with bronchiolitis admitted to hospital in Australia and New Zealand.
2. Consistency | A | All studies consistent |
3. Clinical Impact | C | Moderate |
4. Generalisability | A | Evidence directly generalisable to target population |
5. Applicability | A | Evidence directly applicable to Australian/New Zealand healthcare context |

Evidence statement

NG and IV hydration appear to be similar, although IV insertion requires more attempts.

RECOMMENDATION *(What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)*

<table>
<thead>
<tr>
<th>Evidence statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG and IV hydration appear to be similar, although IV insertion requires more attempts.</td>
</tr>
</tbody>
</table>

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
</tbody>
</table>

UNRESOLVED ISSUES *(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)*

IMPLEMENTATION OF RECOMMENDATION *(Please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)*

<table>
<thead>
<tr>
<th>Question</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A survey of Australian and New Zealand emergency physicians reported 48% used NG and 52% used IV hydration in infants with bronchiolitis requiring non-oral hydration (175).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 21c. GRADE Evidence Summary

Considered Judgement - Strength of recommendation

Question 21c: In Infants presenting to hospital or hospitalized with bronchiolitis, does limiting the volume of non-oral hydration impact on clinically relevant end-points?

<table>
<thead>
<tr>
<th>Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIGH MOD LOW V. LOW</td>
<td>Critical Important Not Important</td>
</tr>
<tr>
<td>O2: Length of stay</td>
<td>N/A</td>
<td>X</td>
</tr>
<tr>
<td>O2: Hyponatraemia</td>
<td>N/A</td>
<td>X</td>
</tr>
</tbody>
</table>

2. **Is there is insufficient evidence to make a recommendation?**

Evidence statement

There is insufficient evidence to make a recommendation.

A prospective cohort study of 36 infants with moderate bronchiolitis who received a standard parenteral hypotonic solution showed drop in serum sodium and osmolality compared to admission despite improvement in respiratory parameters (146).

An earlier study (173) of hyponatraemia in 91 infants with severe bronchiolitis requiring ICU admission, with 4% suffering hyponatraemic seizures showed that three of the four had received hypotonic fluids.

There is insufficient evidence to make recommendations about the use of non-oral hydration but caution about the use of hypotonic fluids. A systematic review (144) of benefit versus harm from advice to increase fluid intake for treating acute respiratory infections in adults and children was unable to identify any evidence from RCTs in the primary care or outpatient setting.

3. **What benefit will the proposed intervention/action have?**

Evidence statement

There is insufficient evidence to make recommendations about the use of non-oral hydration but evidence cautions the use of hypotonic fluids.

Judging the benefits in context

What harm might the proposed intervention/action do?

Evidence statement

There is insufficient evidence to make recommendations about the use of non-oral hydration but evidence cautions the use of hypotonic fluids.

Judging the harms in context

5. **What is the likely balance between good and harm?**

Evidence statement

There is insufficient evidence to make a recommendation regarding fluid restriction of infants with bronchiolitis in the non-ICU setting. The previous use of hypotonic IV fluids may have contributed to practice to restrict volumes due to risk of hyponatraemia.

Judging the balance of benefits and harms in context

6. **Is the intervention/action implementable in the New Zealand and Australian context?**

Summary statement

Yes

Recommend/consider

Not known

Consider economic evaluation

No

Recommend/consider against

7. **Final recommendation**

There is insufficient evidence to recommend a specific proportion of maintenance fluid. There is a risk of fluid overload and judicious and vigilant use of hydration fluid is recommended. Isotonic fluid is recommended.

Strength of recommendation

STRONG

CONDITIONAL

WEAK

8. **Recommendations for research**

The use of restricted versus maintenance volumes of non-oral hydration fluids administered to infants with bronchiolitis needs to be studied in an RCT in the current era of isotonic fluid use.
Question 21c. In Infants presenting to hospital or hospitalized with bronchiolitis, does limiting the volume of non-oral hydration impact on clinically relevant end-points?

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Consistency</td>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
</tbody>
</table>

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Clinical impact</td>
<td>C</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Generalisability</td>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
</tbody>
</table>

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Applicability</td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
</tbody>
</table>

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

Component | Rating | Description |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensible to apply</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
</tbody>
</table>

Evidence statement
There is insufficient evidence to make a recommendation.

RECOMMENDATION

OVERALL GRADE OF RECOMMENDATION
There is insufficient evidence to recommend a specific proportion of maintenance fluid. There is a risk of fluid overload and judicious and vigilant use of hydration fluid is recommended. Isotonic fluid is recommended.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendation(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
</tbody>
</table>

PP Practice Point

UNRESOLVED ISSUES
(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

IMPLEMENTATION OF RECOMMENDATION
(please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Will this recommendation result in changes in usual care?</td>
<td>YES</td>
</tr>
<tr>
<td>Are there any resource implications associated with implementing this recommendation?</td>
<td>YES</td>
</tr>
<tr>
<td>Will the implementation of this recommendation require changes in the way care is currently organised?</td>
<td>YES</td>
</tr>
<tr>
<td>Are the guideline development group aware of any barriers to implementation of this recommendation?</td>
<td>YES</td>
</tr>
</tbody>
</table>
Question 22: In infants presenting to hospital or hospitalised with bronchiolitis, does infection control practices improve clinically relevant end points?

<table>
<thead>
<tr>
<th>1. Outcome measures:</th>
<th>Quality of evidence</th>
<th>Importance of outcome in making a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1: Nosocomial infection</td>
<td>HIGH MOD LOW V. LOW</td>
<td>Critical Important Not Important</td>
</tr>
<tr>
<td>O2: Adverse Events</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>O3: Cost effectiveness</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Is there is insufficient evidence to make a recommendation?

Evidence statement
The current evidence is derived from five observational studies (147-150). No RCT on containing common viral infections such as RSV by different infection control practices in ED or general paediatric ward setting is available. The Cochrane review (151) focuses on different pandemic viral infections affecting a range of population in a variety of settings. This evidence could be extrapolated as indirect evidence for infants with bronchiolitis secondary to common respiratory viral infections.

3. What benefit will the proposed intervention/action have?

Evidence statement
For the critical outcome of nosocomial infection there is low quality evidence of a reduced rate of nosocomial infection in RSV positive infants managed with infection control procedures.

Judging the benefits in context
The evidence is applicable and generalizable to the New Zealand and Australian health settings.

4. What harm might the proposed intervention/action do?

Evidence statement
There has been no significant adverse effect of the infection control practices reported.

Judging the harms in context
Evidence to date is still lacking on the cost effectiveness of different modalities of infection control measures to contain RSV infection in the hospital. It is not known whether the costs associated with isolation or cohorting the RSV positive infants significantly outweigh the benefits of preventing nosocomial RSV infections.

5. What is the likely balance between good and harm?

Evidence statement
The benefits are likely to outweigh the harms.

Judging the balance of benefits and harms in context

Benefits clearly outweigh harms	Recommend	STRONG
Benefits probably outweigh harms	Consider	CONDITIONAL
Not known	Make a recommendation for research (see 8 below)	WEAK
Benefits probably don’t outweigh harms	Consider against	CONDITIONAL
Harms probably outweigh benefits	Recommend against	STRONG

6. Is the intervention/action implementable in the New Zealand and Australian context?

Summary statement
Infection control practices are widely adopted in Australia and New Zealand, although strong evidence on the cost effectiveness is not yet available.

Yes	Recommend/consider
Not known	Consider economic evaluation
No	Recommend/consider against

7. Final recommendation

Hand hygiene is the most effective intervention to reduce hospital acquired infections and is recommended. It has not been specifically looked at in patients with Bronchiolitis. There is inadequate evidence for the benefits of cohorting bronchiolitic patients.

Strength of recommendation
STRONG
CONDITIONAL
WEAK

8. Recommendations for research

Whilst studies to date examined different regimes of infection control practices when managing infants with bronchiolitis, it could be valuable to evaluate the cost effectiveness of these procedures to prevent nosocomial viral infections such as comparing cohorting to simple hand hygiene.
Question 22.

NHMRC Evidence Summary

Question 22: In infants presenting to hospital or hospitalised with bronchiolitis, does infection control practices improve clinically relevant end points?

1. Evidence base (number of studies, level of evidence and risk of bias in the included studies)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One or more Level I studies with a low risk of bias, or several Level II studies with a low risk of bias</td>
</tr>
<tr>
<td>B</td>
<td>One or two Level II studies with a low risk of bias, or SR/several Level III studies with a low risk of bias</td>
</tr>
<tr>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>D</td>
<td>Level IV studies or Level I to III studies/SRs with a high risk of bias</td>
</tr>
</tbody>
</table>

The current evidence is derived from five observational studies with historical controls. No RCT on containing common viral infection such as RSV by different infection control practices in ED or general paediatric ward setting is available. The Cochrane review (151) focus on different pandemic viral infection affecting a range of population in a variety of settings. This evidence could be extrapolated as indirect evidence for infants with bronchiolitis secondary to common respiratory viral infections.

2. Consistency (if only one study was available, rank this component as ‘not applicable’)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All studies consistent</td>
</tr>
<tr>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>C</td>
<td>Some inconsistency, reflecting genuine uncertainty around question</td>
</tr>
<tr>
<td>D</td>
<td>Evidence is not consistent</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable (one study only)</td>
</tr>
</tbody>
</table>

Most of the evidence from observation studies showed consistent reduction of nosocomial RSV infections.

3. Clinical impact (indicate if the study results varied according to some unknown factor (not simply study quality or sample size) and thus the clinical impact of the intervention could not be determined)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very large</td>
</tr>
<tr>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
</tr>
<tr>
<td>D</td>
<td>Slight/Restricted</td>
</tr>
</tbody>
</table>

Risk of nosocomial infection is significantly reduced by infection control practices (pool odds ratio 0.25, 95% CI 0.16 to 0.40). No increase of significant adverse events has been reported.

4. Generalisability (how well does the body of evidence match the population and clinical settings being targeted by the guideline?)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>B</td>
<td>Evidence directly generalisable to target population with some caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence not directly generalisable to target population but could be sensibly applied</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not directly generalisable to target population and hard to judge whether sensibly to apply</td>
</tr>
</tbody>
</table>

Many studies were conducted in North America using populations that are directly generalisable to patients with bronchiolitis seen in Australia and New Zealand.

5. Applicability (is the body of evidence relevant to the Australian/New Zealand healthcare context in terms of health services / delivery of care and cultural factors?)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Evidence directly applicable to Australian/New Zealand healthcare context</td>
</tr>
<tr>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
<tr>
<td>C</td>
<td>Evidence probably applicable to Australian/New Zealand healthcare context with some caveats</td>
</tr>
<tr>
<td>D</td>
<td>Evidence not applicable to Australian/New Zealand healthcare context</td>
</tr>
</tbody>
</table>

The results are applicable to the Australian/New Zealand healthcare context. Infection control practices in many forms are in general universal in Australia and New Zealand, very much more so in paediatric intensive care settings.

Other factors (indicate here any other factors that you took into account when assessing the evidence base (for example, issues that might cause the group to downgrade or upgrade the recommendation)

Cost effectiveness is yet to be determined due to lack of evidence in this area.

EVIDENCE STATEMENT MATRIX (summarise the development group’s synthesis of the evidence relating to the key question, taking all the above factors into account)

<table>
<thead>
<tr>
<th>Component</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence base</td>
<td>C</td>
<td>One or two Level III studies with a low risk of bias or Level I or II studies with moderate risk of bias</td>
</tr>
<tr>
<td>2. Consistency</td>
<td>B</td>
<td>Most studies consistent and inconsistency can be explained</td>
</tr>
<tr>
<td>3. Clinical Impact</td>
<td>B</td>
<td>Substantial</td>
</tr>
<tr>
<td>4. Generalisability</td>
<td>A</td>
<td>Evidence directly generalisable to target population</td>
</tr>
<tr>
<td>5. Applicability</td>
<td>B</td>
<td>Evidence applicable to Australian/New Zealand healthcare context with few caveats</td>
</tr>
</tbody>
</table>
Evidence statement

There is low level of evidence for infection control practices to infants with bronchiolitis. These practices are widely adopted in many health care settings and no adverse events have been reported. The evidence is generalizable to Australia and New Zealand.

RECOMMENDATION

(What recommendation(s) does the guideline development group draw from this evidence? Use action statements where possible)

Hand hygiene is the most effective intervention to reduce hospital acquired infections and is recommended. It has not been specifically looked at in patients with Bronchiolitis. There is inadequate evidence for the benefits of cohorting bronchiolitic patients.

OVERALL GRADE OF RECOMMENDATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendations but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
</tbody>
</table>

PP Practice Point

UNRESOLVED ISSUES

(If needed, keep a note of specific issues that arise when each recommendation is formulated and that require follow up)

Studies used different regimes of infection control practice. The cost analysis of each regime and the optimal regime is still to be determined.

IMPLEMENTATION OF RECOMMENDATION

(please indicate yes or no to the following questions. Where the answer is yes, please provide explanatory information about this. This information will be used to develop the implementation plan for the guidelines)

- Will this recommendation result in changes in usual care? **YES**
- Are there any resource implications associated with implementing this recommendation? **YES**
- Will the implementation of this recommendation require changes in the way care is currently organised? **YES**
- Are the guideline development group aware of any barriers to implementation of this recommendation? **YES**

Australasian Bronchiolitis Guideline 31 August 2016 126
Research Recommendations

1. Research defining the positive and negative predictive values of clinical criteria for diagnosing bronchiolitis is needed, especially that which gives strength to the ability to refute the diagnosis of bronchiolitis when other conditions are present (e.g. cardiac failure, immunodeficiency).

2. Large cohort studies are needed to define the relative risk of particular factors and to define subpopulations with increased risk.

3. Research on infants with more severe bronchiolitis is needed to define the role of CXR.

4. Research on subpopulations at high risk for UTI when the infant is diagnosed with bronchiolitis is needed.

5. Research to determine if patient cohorting based on virological results reduces in-hospital transmission more than appropriate contact precautions is warranted.

6. Further research is needed to derive and validate a bronchiolitis scoring system for infants diagnosed with bronchiolitis that is generalizable for different populations, and that has significance for patient centred outcomes.

7. Research on outcomes of infants with differing levels of oxygen saturations and duration of adequate feeding at the time of discharge.

8. Previous studies should be reviewed to clarify rates of readmission in infants administered beta 2 agonists and discharged home.

9. Research on the use of beta 2 agonists in infants presenting to hospital or hospitalised with bronchiolitis with a personal or family history of atopy is needed.

10. Previous studies should be reviewed to clarify the effects of beta 2 agonists in infants aged between 6 and 12 months of age.

11. Studies to date have used different regimens of nebulised hypertonic saline, and the optimal regime is still to be determined. Further large multicentre trials are required to confirm the overall benefits of nebulised hypertonic saline in both inpatient and the ED settings.

12. Research on the long-term effects in infants with bronchiolitis who have received systemic or local glucocorticoids (nebulisation, oral, IM or IV) is required.

13. Research on the use of glucocorticoids in infants presenting to hospital or hospitalised with bronchiolitis and with a positive response to beta 2 agonists is needed.

14. Research on the use of a combination of glucocorticoids and adrenaline/epinephrine in infants presenting to hospital or hospitalised with bronchiolitis is needed.
15. RCTs with pre-defined indications and protocols for supplemental oxygen are required to determine the effect on hospital admission, length of stay, oxygen saturation targets and effect on feeding difficulties.

16. Further RCTs are needed to confirm the level of oxygen saturations to establish oxygen therapy.

17. Research on the effect of prolonged hypoxia (saturations less than 92%) on long term development is required.

18. Further research is needed in determining an appropriate oxygen saturation level at which to consider discharge of an infant from hospital (inpatient ward or ED) with bronchiolitis.

19. RCTs are needed to establish use of continuous oximetry in the setting of hypoxic infants with bronchiolitis.

20. Further research is needed to determine what effect continuous oximetry monitoring has on time to discharge for inpatients or ED patients.

21. RCTs comparing HFNC with standard oxygen therapy, including sub-groups of infants with hypoxia and respiratory distress without hypoxia, outside of the PICU setting are required.

22. Further research into techniques of chest physiotherapy to determine any benefit in specific patient cohorts with bronchiolitis is required.

23. RCTs using pre-set protocols are needed for use of nasal suction in infants with bronchiolitis.

24. RCTs with pre-set protocols are required to establish the benefit or harm of nasal saline drops.

25. RCTs in paediatric wards and PICUs are needed to directly compare HFNC and nasal CPAP.

26. RCTs with pre-defined indications for oxygen therapy and patient outcomes are required to establish home oxygen programmes for infants with bronchiolitis.

27. Research on subgroups of high risk patients who may benefit from antibiotics, including those admitted to PICU with severe bronchiolitis, is needed. The optimal treatment regime (single dose to 14 days) and timing (acute versus post-acute) is yet to be established.

28. A RCT with longer follow up for outcomes in at risk population is required to determine benefit of antibiotics in infants at risk of bronchiectasis.
29. In infants with bronchiolitis, research on the ideal volume (restricted vs. 100% maintenance) and type of non-oral fluids (NG rehydration solutions or milk, or type of isotonic IV solution) and the effect on infants less than two months of age is needed. The use of non-oral hydration in infants less than two months has not been studied as they were excluded from published studies.

30. Research on the cost effectiveness of procedures to prevent nosocomial infections such as cohorting or hand hygiene measures is required.
References

Sharma BS, Gupta MK, Rafik SP. Hypertonic (3%) saline vs 0.93% saline nebulization for acute viral bronchiolitis: a randomized controlled trial. Indian Pediatr. 2013;50(8):743-7.

121. Pupin MK, Riccetto AG, Ribeiro JD, Baracat EC. Comparison of the effects that two different respiratory physical therapy techniques have on cardiorespiratory parameters in infants with acute viral bronchiolitis. J Bras Pneumol. 2009;35(9):860-7.

Disclaimer

The information set out in this publication is current at the date of first publication and is intended for use as a guide only and may or may not be relevant to patients or circumstances. This Guideline was developed for use within the inpatient wards and emergency departments of hospitals in Australia and New Zealand. The Guideline details the initial assessment and management of infants presenting with Bronchiolitis and is designed to acquaint the reader rapidly with the clinical problem and provide practical advice regarding assessment and management.

These Clinical Practice Guidelines were produced by the PREDICT research network and do not reflect the views of the NHMRC. Where possible we have achieved consensus between practicing clinicians. The recommendations contained in these guidelines do not indicate an exclusive course of action, or serve as a standard of medical care. Variations, taking individual circumstances into account, may be appropriate.

The authors of these guidelines have made considerable efforts to ensure the information upon which they are based is accurate and up to date. The authors accept no responsibility for any inaccuracies, information perceived as misleading, or the success of any treatment regimen detailed in the guidelines.